Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3600, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678029

RESUMEN

Streptococcus pyogenes can cause invasive disease with high mortality despite adequate antibiotic treatments. To address this unmet need, we have previously generated an opsonic IgG1 monoclonal antibody, Ab25, targeting the bacterial M protein. Here, we engineer the IgG2-4 subclasses of Ab25. Despite having reduced binding, the IgG3 version promotes stronger phagocytosis of bacteria. Using atomic simulations, we show that IgG3's Fc tail has extensive movement in 3D space due to its extended hinge region, possibly facilitating interactions with immune cells. We replaced the hinge of IgG1 with four different IgG3-hinge segment subclasses, IgGhxx. Hinge-engineering does not diminish binding as with IgG3 but enhances opsonic function, where a 47 amino acid hinge is comparable to IgG3 in function. IgGh47 shows improved protection against S. pyogenes in a systemic infection mouse model, suggesting that IgGh47 has promise as a preclinical therapeutic candidate. Importantly, the enhanced opsonic function of IgGh47 is generalizable to diverse S. pyogenes strains from clinical isolates. We generated IgGh47 versions of anti-SARS-CoV-2 mAbs to broaden the biological applicability, and these also exhibit strongly enhanced opsonic function compared to the IgG1 subclass. The improved function of the IgGh47 subclass in two distant biological systems provides new insights into antibody function.


Asunto(s)
COVID-19 , Fragmentos Fc de Inmunoglobulinas , Inmunoglobulina G , SARS-CoV-2 , Streptococcus pyogenes , Animales , Humanos , Ratones , Anticuerpos Antibacterianos/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , Fragmentos Fc de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G/química , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Ratones Endogámicos BALB C , Fagocitosis , Ingeniería de Proteínas/métodos , SARS-CoV-2/inmunología , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/inmunología
2.
Front Immunol ; 12: 629103, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33828549

RESUMEN

Many bacteria can interfere with how antibodies bind to their surfaces. This bacterial antibody targeting makes it challenging to predict the immunological function of bacteria-associated antibodies. The M and M-like proteins of group A streptococci (GAS) exhibit IgGFc-binding regions, which they use to reverse IgG binding orientation depending on the host environment. Unraveling the mechanism behind these binding characteristics may identify conditions under which bound IgG can drive an efficient immune response. Here, we have developed a biophysical model for describing these complex protein-antibody interactions. We show how the model can be used as a tool for studying the binding behavior of various IgG samples to M protein by performing in silico simulations and correlating this data with experimental measurements. Besides its use for mechanistic understanding, this model could potentially be used as a tool to aid in the development of antibody treatments. We illustrate this by simulating how IgG binding to GAS in serum is altered as specified amounts of monoclonal or pooled IgG is added. Phagocytosis experiments link this altered antibody binding to a physiological function and demonstrate that it is possible to predict the effect of an IgG treatment with our model. Our study gives a mechanistic understanding of bacterial antibody targeting and provides a tool for predicting the effect of antibody treatments in the presence of bacteria with IgG-modulating surface proteins.


Asunto(s)
Anticuerpos Antibacterianos/metabolismo , Anticuerpos Monoclonales/metabolismo , Antígenos Bacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Portadoras/metabolismo , Inmunoglobulina G/metabolismo , Modelos Inmunológicos , Streptococcus pyogenes/metabolismo , Especificidad de Anticuerpos , Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Sitios de Unión de Anticuerpos , Unión Competitiva , Proteínas Portadoras/inmunología , Epítopos , Humanos , Fagocitosis , Unión Proteica , Streptococcus pyogenes/inmunología , Células THP-1
3.
Front Immunol ; 12: 808932, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095897

RESUMEN

Spike-specific antibodies are central to effective COVID19 immunity. Research efforts have focused on antibodies that neutralize the ACE2-Spike interaction but not on non-neutralizing antibodies. Antibody-dependent phagocytosis is an immune mechanism enhanced by opsonization, where typically, more bound antibodies trigger a stronger phagocyte response. Here, we show that Spike-specific antibodies, dependent on concentration, can either enhance or reduce Spike-bead phagocytosis by monocytes independently of the antibody neutralization potential. Surprisingly, we find that both convalescent patient plasma and patient-derived monoclonal antibodies lead to maximum opsonization already at low levels of bound antibodies and is reduced as antibody binding to Spike protein increases. Moreover, we show that this Spike-dependent modulation of opsonization correlate with the outcome in an experimental SARS-CoV-2 infection model. These results suggest that the levels of anti-Spike antibodies could influence monocyte-mediated immune functions and propose that non-neutralizing antibodies could confer protection to SARS-CoV-2 infection by mediating phagocytosis.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Opsonización/inmunología , Fagocitosis/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Monoclonales/inmunología , Línea Celular , Células HEK293 , Humanos , Pruebas de Neutralización/métodos
4.
J Immunol ; 206(1): 214-224, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33268484

RESUMEN

Phagocytosis is measured as a functional outcome in many research fields, but accurate quantification can be challenging, with no robust method available for cross-laboratory reproducibility. In this study, we identified a simple, measurable parameter, persistent prey-phagocyte association, to use for normalization and dose-response analysis. We apply this in a straightforward analytical method, persistent association-based normalization, in which the multiplicity of prey (MOP) ratio needed to elicit half of the phagocytes to associate persistently (MOP50) is determined first. MOP50 is then applied to normalize for experimental factors, separately analyzing association and internalization. We use reference human phagocyte THP-1 cells with different prey and opsonization conditions to compare the persistent association-based normalization method to standard ways of assessing phagocytosis and find it to perform better, exhibiting increased robustness, sensitivity, and reproducibility. The approach is easily incorporated into most existing phagocytosis assays and allows for reproducible results with high sensitivity.


Asunto(s)
Técnicas de Cultivo de Célula/normas , Fagocitos/fisiología , Humanos , Fagocitosis , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Células THP-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA