Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 20(11): 2600-2609, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38426540

RESUMEN

Molecular machines, which operate in highly fluctuating environments far from equilibrium, may benefit from their non-equilibrium environments. It is, however, a topic of controversy how the efficiency of the microscopic engines can be enhanced. Recent experiments showed that microscopic Stirling engines in bacterial reservoirs could show high performance beyond the equilibrium thermodynamics. In this work, we perform overdamped Langevin dynamics simulations for microscopic Stirling heat engines in bacterial reservoirs and show that the temperature dependence of the magnitude of active noises should be responsible for such high efficiency. Only when we introduce temperature-dependent active noises, the efficiency of the microscopic Stirling engines is enhanced significantly as in experiments.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38032109

RESUMEN

Recent advances in chiral nanomaterials interacting with circularly polarized (CP) light open new expectations for optoelectronics in various research fields such as quantum- and biology-related technology. To fully utilize the great potential of chiral optoelectronic devices, the development of chiral optoelectronic devices that function in the near-infrared (NIR) region is required. Herein, we demonstrate a NIR-absorbing, chiroptical, low-band-gap polymer semiconductor for high-performance NIR CP light phototransistors. A newly synthesized diketopyrrolopyrrole-based donor-acceptor-type chiral π-conjugated polymer with an asymmetric alkyl side chain exhibits strong chiroptical activity in a wavelength range of 700-1000 nm. We found that the attachment of an enantiomerically pure stereogenic alkyl substituent to the π-conjugated chromophore backbone led to strong chiroptical activity through symmetry breaking of the π-conjugation of the backbone in a molecular rotational motion while maintaining the coplanar backbone conformation for efficient charge transport. The NIR CP light-sensing phototransistors based on a chiral π-conjugated polymer photoactive single channel layer exhibit a high photoresponsivity of 26 A W-1 under NIR CP light irradiation at 920 nm, leading to excellent NIR CP light distinguishability. This study will provide a rationale and strategy for designing chiral π-conjugated polymers for high-performance NIR chiral optoelectronics.

3.
Phys Rev E ; 108(4-1): 044602, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37978710

RESUMEN

We employ only the positions of colloidal particles and construct machine learning (ML) models to test the presence of structural order in glass transition for two kinds of two-dimensional (2D) colloids: 2D polydisperse colloids (PC) with medium-range crystalline order (MRCO) and 2D binary colloids (BC) without MRCO. ML models predict the glass transition of 2D colloids successfully without any information on MRCO. Even certain ML models trained with BC predict the glass transition of PC successfully, thus suggesting that universal structural characteristics would exist besides MRCO.

4.
Phys Chem Chem Phys ; 25(34): 23058-23068, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37602406

RESUMEN

Organic ionic plastic crystals (OIPCs) consist of molecular ions of which interactions are strong enough to maintain crystalline order but are weak enough to allow the rotations of the molecular ions at sufficiently high temperatures. When defects such as Schottky vacancies and grain boundaries are introduced into OIPCs, the defects facilitate the transport of dopants such as Li+ ions, for which OIPCs are considered as strong candidates for solid electrolytes. The transport mechanism of dopant ions in OIPCs with defects, however, remains elusive at a molecular level partly because it is hard in experiments to track the dopant ions and control the types of defects systematically. In this work, we perform molecular dynamics simulations for 1,3-dimethylimidazolium hexafluorophosphate ([MMIM][PF6]) OIPCs with Li+ ions doped and show that the transport mechanism of Li+ ions depends on the types and concentrations of defects. A high concentration of Schottky vacancies enhance the overall ion conduction, but decrease the transference number. The transference numbers of Li+ ions in [MMIM][PF6] with grain boundaries are similar to that in [MMIM][PF6] with 0.78 mol% point vacancies. We also find that the transport of ions in OIPCs is strongly heterogeneous and the time scales of the dynamic heterogeneity of the ions are sensitive to the types of defects.

5.
Nucleic Acids Res ; 51(11): 5634-5646, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37158237

RESUMEN

In this study, we specifically visualized DNA molecules at their AT base pairs after in vitro phage ejection. Our AT-specific visualization revealed that either end of the DNA molecule could be ejected first with a nearly 50% probability. This observation challenges the generally accepted theory of Last In First Out (LIFO), which states that the end of the phage λ DNA that enters the capsid last during phage packaging is the first to be ejected, and that both ends of the DNA are unable to move within the extremely condensed phage capsid. To support our observations, we conducted computer simulations that revealed that both ends of the DNA molecule are randomized, resulting in the observed near 50% probability. Additionally, we found that the length of the ejected DNA by LIFO was consistently longer than that by First In First Out (FIFO) during in vitro phage ejection. Our simulations attributed this difference in length to the stiffness difference of the remaining DNA within the phage capsid. In conclusion, this study demonstrates that a DNA molecule within an extremely dense phage capsid exhibits a degree of mobility, allowing it to switch ends during ejection.


Asunto(s)
Bacteriófago lambda , ADN Viral , Empaquetamiento del Genoma Viral , Bacteriófago lambda/fisiología , ADN Viral/metabolismo , Cápside/metabolismo
6.
J Chem Phys ; 158(16)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37096859

RESUMEN

The shape of a viral capsid affects the equilibrium conformation of DNA inside the capsid: the equilibrium DNA conformation inside a spherical capsid is a concentric spool while the equilibrium conformation inside an elongated capsid is a twisted toroid. The conformation of DNA, jammed inside the capsid due to high internal pressure, influences the ejection kinetics of the DNA from the capsid. Therefore, one would expect that the DNA ejection kinetics would be subject to the shape of the viral capsid. The effects of the capsid shape on the ejection, however, remain elusive partly due to a plethora of viral capsid shapes. In this work, we perform Langevin dynamics simulations for the ejection of a polymer chain from three different types of viral capsids: (1) spherical, (2) cubic, and (3) cuboid capsids. We find that the ejection rate of the polymer chain from the spherical capsid is much faster than that from either cubic or cuboid capsids. The polymer chain in the spherical capsid may undergo collective rotational relaxation more readily such that the polymer chain becomes more mobile inside the spherical capsid, which enhances the ejection kinetics. On the other hand, a threading motion is dominant inside cubic and cuboid capsids. We also find that the effects of the collective rotational motion become more significant for a more rigid chain inside a capsid.


Asunto(s)
Cápside , Nanoporos , Polímeros , ADN Viral/genética , Proteínas de la Cápside , Conformación de Ácido Nucleico
7.
Phys Chem Chem Phys ; 24(41): 25171-25181, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36239283

RESUMEN

Various dopant alkali ions have been introduced into organic ionic plastic crystals (OIPCs) in order to design solid electrolytes with the desired thermal stability and ionic conductivity. We performed extensive molecular dynamics simulations to investigate at the molecular level how dopant alkali ions affect the rotational and the translational diffusion of ions and the thermal stability of OIPCs. We introduced lithium (Li+), sodium (Na+), and potassium (K+) ions as dopants into 1-methyl-3-methylimidazolium hexafluorophosphate ([MMIM][PF6]) OIPCs at the molecular level. We found that as smaller alkali ions are doped, larger domains of the crystals are disrupted. This makes it harder for OIPCs doped with smaller alkali ions to maintain their crystal structure such that the melting temperature of OIPCs decreases and phase transitions between rotator phases change. The size of dopant alkali ions also affects the rotational diffusion of matrix ions of [MMIM]+ and PF6-: the rotational diffusion of matrix ions near Li+ ions becomes more heterogeneous and facilitated than those near other kinds of alkali ions. We also find that alkali ions of different kinds diffuse translationally in OIPCs via different transport mechanisms: while the Li+ ion undergoes continuous (anion-associated) diffusion through an amorphous region, the K+ ion hops between neighbor lattice sites. To investigate the effects of the relative size between matrix cations and dopant ions on translational diffusions, we also simulate OIPCs with longer alkyl chains such as 1-ethyl-3-methylimidazolium hexafluorophosphate ([EMIM][PF6]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) crystals. We find that as the size of imidazolium cations increases, the hopping diffusion of the K+ ion becomes suppressed and the K+ ion is more likely to diffuse through amorphous domains.

8.
J Chem Phys ; 157(14): 144501, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36243524

RESUMEN

Organic ionic plastic crystals (OIPCs), which consist of organic molecular ions, are considered excellent candidates for solid electrolytes due to their high ionic conductivity in solid phases. Molecular ions undergo either rotational or conformational relaxation at certain temperatures in OIPCs. There have been molecular simulations to understand the rotational motion. The polarizability of ions was, however, often ignored in simulations due to the high computational cost. Since the polarizability may affect the translational diffusion, the ionic conductivity, and the phase transition of ionic liquids, it should be of interest to investigate how the polarizability would affect the rotational diffusion of ions in solid phases. In this work, we perform extensive atomistic molecular dynamics simulations for two different kinds of OIPCs, 1-methyl-3-methylimidazolium hexafluorophosphate ([MMIM][PF6]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]). We employ various simulation models for ions by turning on and off the polarization in their interaction potentials. We find that the polarizability hardly affects the density, the crystalline structure, and the phase transition of both OIPCs. However, a certain rotational motion, especially the rotational diffusion of PF6 - in [MMIM][PF6] OIPCs, is enhanced by a factor of up to four when the polarizability is turned on. The PF6 - in [MMIM][PF6] OIPCs undergoes rotational hopping motions more significantly due to polarizability. We find that the rotational diffusion of a certain ion can be enhanced only when the polarization results in a significant change in the dipole moment of the neighboring ions around the ion.

9.
Phys Rev E ; 104(5-1): 054615, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34942845

RESUMEN

The dynamic heterogeneity and the translation-rotation decoupling are the dynamic signatures of glasses and supercooled liquids. Whether and how the dynamic heterogeneity would relate to the local structure of glasses has been a puzzle for decades. In this work we perform molecular dynamics simulations for tracers in both two-dimensional polydisperse colloids (2DPC) and two-dimensional binary colloids (2DBC). In 2DPC glasses, hexatic local structures develop at low enough temperatures and grow quickly along with the dynamic correlation length of the 2DPC, which is well known as the medium-range crystalline order (MRCO). In 2DBC glasses, on the other hand, any explicit local structure has not been reported to grow significantly with the dynamic correlation length at low temperatures. We introduce two different types of tracers into colloidal systems: A diamond tracer that resembles the MRCO of 2DPC glasses and a square tracer that is dissimilar to any local structure of glasses. The translation-rotation decoupling of the diamond tracer in 2DPC glasses is much more significant than that of the square tracer in the same 2DPC glasses. On the other hand, such a tracer shape-dependence of the decoupling is not observed in 2DBC glasses where the local hexatic structure does not develop significantly. We introduce a shape-dependency parameter of the decoupling and find that the shape-dependency parameter grows along with the dynamic correlation length in 2DPC glasses but not in 2DBC glasses. This illustrates that the dynamic heterogeneity and the translation-rotation decoupling of tracers could reveal the local structure that develops in glasses.

10.
Phys Rev E ; 104(4-1): 044402, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34781553

RESUMEN

Cell membranes are heterogeneous with a variety of lipids, cholesterol, and proteins and are composed of domains of different compositions. Such heterogeneous environments make the transport of cholesterol complicated: cholesterol not only diffuses within a particular domain but also travels between domains. Cholesterol also flip-flops between upper and lower leaflets such that cholesterol may reside both within leaflets and in the central region between two leaflets. How the presence of multiple domains and the interdomain exchange of cholesterol would affect the cholesterol transport, however, remains elusive. In this study, therefore, we perform molecular dynamics simulations up to 100µs for ternary component lipid membranes, which consist of saturated lipids (dipalmitoylphosphatidylcholine, DPPC), unsaturated lipids (dilinoleylphosphatidylcholine, DIPC), and cholesterol. The ternary component membranes in our simulations form two domains readily: DPPC and DIPC domains. We find that the diffusion of cholesterol molecules is much more heterogeneous and non-Gaussian than expected for binary component lipid membranes of lipids and cholesterol. The non-Gaussian parameter of the cholesterol molecules is about four times larger in the ternary component lipid membranes than in the binary component lipid membranes. Such non-Gaussian and heterogeneous transport of cholesterol arises from the interplay among the interdomain kinetics, the different diffusivity of cholesterol in different domains, and the flip-flop of cholesterol. This suggests that in cell membranes that consist of various domains and proteins, the cholesterol transport can be very heterogeneous. We also find that the mechanism of the interdomain exchange differs for different domains: cholesterol tends to exit the DIPC domain along the central region of the membrane for the DIPC-to-DPPC transition, while the cholesterol is likely to exit the DPPC domain within the membrane leaflet for the DPPC-to-DIPC transition. Also, the interdomain exchange kinetics of cholesterol for the DPPC-to-DIPC transition is up to 7.9 times slower than the DIPC-to-DPPC transition.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina , Membrana Dobles de Lípidos , Membrana Celular , Colesterol , Difusión , Simulación de Dinámica Molecular
11.
Polymers (Basel) ; 13(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34833348

RESUMEN

The time-temperature superposition (TTS) principle, employed extensively for the analysis of polymer dynamics, is based on the assumption that the different normal modes of polymer chains would experience identical temperature dependence. We aim to test the critical assumption for TTS principle by investigating poly(ethylene oxide) (PEO) melts, which have been considered excellent solid polyelectrolytes. In this work, we perform all-atom molecular dynamics simulations up to 300 ns at a range of temperatures for PEO melts. We find from our simulations that the conformations of strands of PEO chains in melts show ideal chain statistics when the strand consists of at least 10 monomers. At the temperature range of T= 400 to 300 K, the mean-square displacements (⟨Δr2(t)⟩) of the centers of mass of chains enter the Fickian regime, i.e., ⟨Δr2(t)⟩∼t1. On the other hand, ⟨Δr2(t)⟩ of the monomers of the chains scales as ⟨Δr2(t)⟩∼t1/2 at intermediate time scales as expected for the Rouse model. We investigate various relaxation modes of the polymer chains and their relaxation times (τn), by calculating for each strand of n monomers. Interestingly, different normal modes of the PEO chains experience identical temperature dependence, thus indicating that the TTS principle would hold for the given temperature range.

12.
Phys Chem Chem Phys ; 23(20): 11980-11989, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34002734

RESUMEN

Organic ionic plastic crystals (OIPCs) are the crystals of electrolytes with a long-range translational order. The rotational modes of ions in OIPCs are, however, activated even in solid phases such that the diffusion of dopants such as lithium ions may be facilitated. OIPCs have been, therefore, considered as good candidates for solid electrolytes. Recent experiments and theoretical studies have suggested that both the translational and the rotational diffusion of ions are quite heterogeneous: the diffusion of some ions are quite fast while other ions of the same kind hardly diffuse, either rotationally or translationally. Such dynamic heterogeneity would be a key to the transport mechanism of dopants in solid state electrolytes. In this work, we investigate the effects of defects on the dynamic heterogeneity of OIPCs. We perform atomistic molecular dynamics simulation of 1,3-dimethylimidazolium hexafluorophosphate ([MMIM][PF6]) with a pair of cation and anion vacancies. At low temperature, vacancies undergo hopping motions toward each other and form a charge-neutral cluster. At high temperature, two vacancies act like a loosely bonded molecule and diffuse together via hopping motions. We find that the translational diffusion of ions is correlated strongly with the vacancy diffusion and becomes heterogeneous when the vacancies hop. The rotation of ions also becomes active when the ions are close to vacancies such that the rotational dynamic heterogeneity strengthens.

13.
J Chem Phys ; 154(13): 135101, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33832232

RESUMEN

Intermolecular interactions between cholesterol and lipids in cell membranes, which play critical roles in cellular processes such as the formation of nano-domains, depend on the molecular structure of the lipids. The diffusion and the spatial arrangement of cholesterol within the lipid membranes also change with the type of lipids. For example, the flip-flop, an important transport mechanism for cholesterol in the membranes, can be facilitated significantly by the presence of unsaturated lipids. However, how the structure of lipids affects the spatial arrangement and the dynamics of cholesterol remains elusive at a molecular level. In this study, we investigate the effects of lipid-cholesterol interactions on the spatial arrangement and the dynamics of cholesterol. We perform molecular dynamics simulations for the binary component membranes of lipids and cholesterol. We employ seven different kinds of lipids by changing either the degree of a saturation level or the length of lipid tails. We find from our simulations that the rate of cholesterol flip-flop is enhanced as the lipids are either less saturated or shorter, which is consistent with previous studies. Interestingly, when the lipid tails are fully saturated and sufficiently long, the center in between two leaflets becomes metastable for cholesterol to stay at. Because the cholesterol at the membrane center diffuses faster than that within leaflets, regardless of the lipid type, such an emergence of the metastable state (in terms of the cholesterol position) complicates the cholesterol diffusion significantly.


Asunto(s)
Colesterol/química , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Simulación de Dinámica Molecular
14.
J Chem Phys ; 154(5): 054308, 2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33557548

RESUMEN

The conformational structures of heterocyclic compounds are of considerable interest to chemists and biochemists as they are often the constituents of natural products. Among saturated four-membered heterocycles, the conformational structure of oxetane is known to be slightly puckered in equilibrium because of a low interconversion barrier in its ring-puckering potential, unlike cyclobutane and thietane. We measured the one-photon vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) and two-photon IR+VUV-MATI spectra of oxetane for the first time to determine the ring-puckering potential of the oxetane cation and hence its conformational structure in the D0 (ground) state. Remarkably, negative anharmonicity and large amplitudes were observed for the ring-puckering vibrational mode progression in the low-frequency region of the observed MATI spectra. We were able to successfully analyze the progression in the MATI spectra through the Franck-Condon simulations, using modeled potential energy functions for the ring-puckering modes in the S0 and D0 states. Considering that the interconversion barrier and puckered angle for the ring-puckering potential on the S0 state were found to be 15.5 cm-1 and 14°, respectively, the cationic structure is expected to be planar with C2v symmetry. Our results revealed that the removal of an electron from the nonbonding orbitals on the oxygen atom in oxetane induced the straightening of the puckered ring in the cation owing to an increase in ring strain. Consequently, we conclude that this change in the conformational structure upon ionization generated the ring-puckering vibrational mode progression in the MATI spectra.

15.
Phys Rev E ; 102(5-1): 052501, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33327119

RESUMEN

Both polymer fiber glasses and bulk polymer glasses exhibit nonlinear mechanical responses under uniaxial deformation. In polymer fibers, however, polymer chains are confined strongly and the surface area is relatively large compared to their volume. The confinement and the surface may lead to the spatially heterogeneous relaxation of chains in polymer fibers. In this work we perform molecular dynamics simulations and investigate the relation between the heterogeneous dynamics and the nonlinear mechanical responses at a molecular level. Our molecular simulations capture successfully not only the nonlinear mechanical response but also the dependence of mechanical properties on the strain rate of typical polymer glasses as in experiments. We find that the local elastic modulus and the nonaffine displacement are spatially heterogeneous in the pre-yield regime, which results in a lower elastic modulus for polymer fibers than bulk polymer glasses. In the post-yield regime, those mechanical properties become relatively homogeneous. Monomers with large nonaffine displacement are localized mainly at the interfacial region in the pre-yield regime while highly nonaffine monomers are distributed throughout the fibers in the post-yield regime. We show that the nonaffine displacement during deformation relates closely to the mechanical response of the polymer fibers. We also find that in the strain-hardening regime there is a significant difference in the energetic contribution to the stress between polymer fibers and bulk polymers, for which the modulus of the strain-hardening regime of the polymer fibers is smaller than that of bulk polymers.

16.
Phys Rev E ; 102(2-1): 022501, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32942375

RESUMEN

Chromatin undergoes condensation-decondensation processes repeatedly during its cell lifetime. The spatial organization of chromatin in nucleus resembles the fractal globule, of which structure significantly differs from an equilibrium polymer globule. There have been efforts to develop a polymer globule model to describe the fractal globulelike structure of tightly packed chromatin in nucleus. However, the transition pathway of a polymer toward a globular state has been often ignored. Because biological systems are intrinsically in nonequilibrium states, the transition pathway that the chromatin would take before reaching the densely packaged globule should be of importance. In this study, by employing a simple polymer model and Langevin dynamics simulations, we investigate the conformational transition of a single polymer from a swollen coil to a compact globule. We aim to elucidate the effect of transition pathways on the final globular structure. We show that a fast collapse induces a nonequilibrium structure even without a specific intramolecular interaction and that its relaxation toward an equilibrium globule is extremely slow. Due to a strong confinement, the fractal globule never relaxes into an equilibrium state during our simulations such that the globular structure becomes dependent on the transition pathway.

17.
Polymers (Basel) ; 12(9)2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32932910

RESUMEN

We report Brownian dynamics simulations of tracer diffusion in regularly crosslinked polymer networks in order to elucidate the transport of a tracer particle in polymer networks. The average mesh size of homogeneous polymer networks is varied by assuming different degrees of crosslinking or swelling, and the size of a tracer particle is comparable to the average mesh size. Simulation results show subdiffusion of a tracer particle at intermediate time scales and normal diffusion at long times. In particular, the duration of subdiffusion is significantly prolonged as the average mesh size decreases with increasing degree of crosslinking, for which long-time diffusion occurs via the hopping processes of a tracer particle after undergoing rattling motions within a cage of the network mesh for an extended period of time. On the other hand, the cage dynamics and hopping process are less pronounced as the mesh size decreases with increasing polymer volume fractions. The interpretation is provided in terms of fluctuations in network mesh size: at higher polymer volume fractions, the network fluctuations are large enough to allow for collective, structural changes of network meshes, so that a tracer particle can escape from the cage, whereas, at lower volume fractions, the fluctuations are so small that a tracer particle remains trapped within the cage for a significant period of time before making infrequent jumps out of the cage. This work suggests that fluctuation in mesh size, as well as average mesh size itself, plays an important role in determining the dynamics of molecules and nanoparticles that are embedded in tightly meshed polymer networks.

18.
J Phys Chem B ; 124(31): 6894-6904, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32628857

RESUMEN

Organic ionic plastic crystals (OIPCs) are a unique class of materials that undergo orientational and conformational motions while maintaining a long-range ordered lattice structure. OIPCs have attracted attention because the rotational motions were known to accelerate the diffusion of mobile ions such as lithium ions. However, only a small number of combinations of cations and anions lead to OIPCs because the rotational motion may be restricted by both the molecular structure and the crystal class. In this work, we perform molecular dynamics simulations to study the effects of the molecular structure and the crystal class on the rotational motion and the phase transitions. We investigate four imidazolium-based ionic crystals: (1) 1-methyl-3-methylimidazolium hexafluorophosphate ([MMIM][PF6]), (2) 1-methyl-3-methylimidazolium chloride ([MMIM][Cl]), (3) monoclinic 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]), and (4) orthorhombic [BMIM][Cl] ionic crystals. We construct initial configurations of OIPCs by employing experimental crystalline structures. Then, we increase the temperature gradually and monitor the density and the radial distribution functions. We estimate the rotational van Hove correlation functions and find that molecules in plastic crystal phases undergo rotational hopping motions and OIPCs exhibit rotational dynamic heterogeneity significantly. The structure of anions and cations affect the phase transition of OIPCs. And the crystal class is also critical to the phase transition of OIPCs because the rotational motion of ions depends on the crystal class.

19.
J Chem Phys ; 152(18): 184905, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32414275

RESUMEN

The loop formation of a single polymer chain has served as a model system for various biological and chemical processes. Theories based on the Smoluchowski equation proposed that the rate constant (kloop) of the loop formation would be inversely proportional to viscosity (η), i.e., kloop ∼ η-1. Experiments and simulations showed, however, that kloop showed the fractional viscosity dependence of kloop ∼ η-ß with ß < 1 either in glasses or in low-viscosity solutions. The origin of the fractional viscosity dependence remains elusive and has been attributed to phenomenological aspects. In this paper, we illustrate that the well-known failure of classical kinetics of the loop formation results from the breakdown of the local thermal equilibrium (LTE) approximation and that the mutual information can quantify the breakdown of the LTE successfully.

20.
ACS Macro Lett ; 9(2): 210-215, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35638684

RESUMEN

For polymer-blend films, local dynamics in confined polymer domains tend to differ from the bulk because of significant contributions from the polymer-polymer interface. Herein, we investigated the diffusion dynamics of entangled polymer thin films confined between different polymers in a direction perpendicular to the surface using neutron reflectivity. We found that a bilayer of poly(methyl methacrylate) (PMMA) and deuterated PMMA (dPMMA) sandwiched between polystyrene (PS) layers exhibited significant increase in mobility near the polymer-polymer interface with decreasing PMMA thickness. This indicates that the contribution of repulsive interactions at the immiscible polymer-polymer interface becomes more significant as the film thickness decreases. We also found that the interfacial roughness between PMMA and PS (28 Å at equilibrium) and soft confinement of PS layers did not significantly affect the change in the diffusion dynamics of the adjacent PMMA. This was evidenced by comparison with the diffusion results of multilayers with a flat interface (8 Å at equilibrium) between PMMA and hard PS by UV cross-linking.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA