Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Traffic Inj Prev ; 25(3): 463-471, 2024.
Article En | MEDLINE | ID: mdl-38175182

OBJECTIVE: Between 2010 and 2020, an annual average of more than 70,000 pedestrians were injured in U.S. motor vehicle crashes. Pedestrian fatalities increased steadily over that period, outpacing increases in vehicle occupant fatalities. Strategies for reducing pedestrian injuries include pedestrian crash prevention and improved vehicle design for protection of pedestrians in the crashes that cannot be prevented. This study focuses on understanding trends in injuries sustained in U.S. pedestrian crashes to inform continuing efforts to improve pedestrian crash protection in passenger vehicles. METHODS: More than 160,000 adult pedestrians injured in motor vehicle crashes who were admitted to U.S. trauma centers between 2007 and 2016 were drawn from the National Trauma Data Bank (NTDB) Research Data Sets. The injuries in those cases were used to explore the shifting patterns of pedestrian injuries. RESULTS: The proportion of pedestrians with thorax injuries increased 3.0 percentage points to 30.7% of trauma center-admitted NTDB pedestrian cases over the 10 years studied, and the proportion with pelvis/hip injuries increased to 21.2%. The proportion of cases with head injuries fell to 48.6%, and the percentage of pedestrians with lower extremity injury (44%) did not change significantly over the 10 year period. Assessment of possible reasons for the shifts suggested that increasing numbers of sport utility vehicles, population increases among the oldest age groups, and improvements in pedestrian protection in U.S. passenger vehicles likely contributed to, but did not completely account for, the relative changes in injury frequency in each body region. CONCLUSIONS: More important than the reasons for the shifts in the relative frequency of injury to each body region are the conclusions that can be drawn regarding priorities for pedestrian protection research. Though head/face and lower extremity injuries remained the most frequently injured body regions in adult pedestrians admitted to NTDB trauma centers, the relative frequency of thorax and pelvis/hip injuries increased steadily, underlining the increasing importance of pedestrian protection research on these body regions.


Hip Injuries , Leg Injuries , Pedestrians , Wounds and Injuries , Adult , Humans , United States/epidemiology , Accidents, Traffic , Walking/injuries , Motor Vehicles , Wounds and Injuries/epidemiology , Wounds and Injuries/prevention & control
2.
Accid Anal Prev ; 191: 107220, 2023 Oct.
Article En | MEDLINE | ID: mdl-37506408

The shoulder girdle complex, through engagement with the seat belt, influences motor vehicle occupant upper body movement during frontal impacts, affecting the movement of the head and spine. The recently developed Large Omni-directional Child (LODC) anthropomorphic test device (ATD) was designed with flexible shoulder girdle structures that capture the unique kinematics in pediatric occupants. However, the LODC shoulder has not been evaluated for biofidelity due to the lack of biomechanical data available on pediatric shoulder responses. This study evaluated quasi-static pediatric shoulder girdle complex responses through non-invasive displacement measurements. These data were obtained to evaluate, and, if necessary, improve the biofidelity of the LODC ATD. Shoulder range of motion and anthropometric measurements were obtained from 25 pediatric volunteers, ages 8-12 years old. Loads were applied bilaterally exclusively to the shoulder complexes in increments of 25 N up to 150 N per shoulder at 90 and 135 degrees of shoulder flexion. Still photos were used to determine shoulder displacement in the sagittal plane from images captured prior to and following the load applications. Data analysis consisted of motion tracking to evaluate the absolute and relative displacement of the right acromion and T1. The displacements for each volunteer were normalized based on the volunteer's shoulder width compared to the shoulder width of the LODC ATD. For the 90° load, the acromion moved relative to T1 an average of 28.1 mm forward and 3.1 mm downward at maximum displacement. For the 135° load, the acromion moved relative to T1 an average of 15.5 mm forward and 42.7 mm upward at maximum displacement. Similar displacements at higher loads indicated that the volunteers achieved their maximum range of motion. The results of this study will be compared to the LODC ATD, assessing the biofidelity of the shoulder complex.


Accidents, Traffic , Shoulder , Humans , Child , Shoulder/physiology , Seat Belts , Acceleration , Biomechanical Phenomena , Range of Motion, Articular , Manikins , Head/physiology
3.
Traffic Inj Prev ; 18(sup1): S136-S141, 2017 05 29.
Article En | MEDLINE | ID: mdl-28332863

OBJECTIVE: This study compares the responses of male and female WorldSID dummies with post mortem human subject (PMHS) responses in full-scale vehicle tests. METHODS: Tests were conducted according to the FMVSS-214 protocols and using the U.S. Side Impact New Car Assessment Program change in velocity to match PMHS experiments, published earlier. Moving deformable barrier (MDB) tests were conducted with the male and female surrogates in the left front and left rear seats. Pole tests were performed with the male surrogate in the left front seat. Three-point belt restraints were used. Sedan-type vehicles were used from the same manufacturer with side airbags. The PMHS head was instrumented with a pyramid-shaped nine-axis accelerometer package, with angular velocity transducers on the head. Accelerometers and angular velocity transducers were secured to T1, T6, and T12 spinous processes and sacrum. Three chest bands were secured around the upper, middle, and lower thoraces. Dummy instrumentation included five infrared telescoping rods for assessment of chest compression (IR-TRACC) and a chest band at the first abdomen rib, head angular velocity transducer, and head, T1, T4, T12, and pelvis accelerometers. RESULTS: Morphological responses of the kinematics of the head, thoracic spine, and pelvis matched in both surrogates for each pair. The peak magnitudes of the torso accelerations were lower for the dummy than for the biological surrogate. The brain rotational injury criterion (BrIC) response was the highest in the male dummy for the MDB test and PMHS. The probability of AIS3+ injuries, based on the head injury criterion, ranged from 3% to 13% for the PMHS and from 3% to 21% for the dummy from all tests. The BrIC-based metrics ranged from 0 to 21% for the biological and 0 to 48% for the dummy surrogates. The deflection profiles from the IR-TRACC sensors were unimodal. The maximum deflections from the chest band placed on the first abdominal rib were 31.7 mm and 25.4 mm for the male and female dummies in the MDB test, and 37.4 mm for the male dummy in the pole test. The maximum deflections computed from the chest band contours at a gauge equivalent to the IR-TRACC location were 25.9 mm and 14.8 mm for the male and female dummies in the MDB test, and 37.4 mm for the male dummy in the pole test. Other data (static vehicle deformation profiles, accelerations histories of different body regions, and chest band contours for the dummy and PMHS) are given in the appendix. CONCLUSIONS: This is the first study to compare the responses of PMHS and male and female dummies in MDB and pole tests, done using the same recent model year vehicles with side airbag and head curtain restraints. The differences between the dummy and PMHS torso accelerations suggest the need for design improvements in the WorldSID dummy. The translation-based metrics suggest low probability of head injury. As the dummy internal sensor underrecorded the peak deflection, multipoint displacement measures are therefore needed for a more accurate quantification of deflection to improve the safety assessment of occupants.


Accidents, Traffic/statistics & numerical data , Cadaver , Manikins , Acceleration , Biomechanical Phenomena , Female , Head/physiology , Humans , Male , Pelvis/physiology , Reproducibility of Results , Ribs/physiology , Thoracic Vertebrae/physiology , Thorax/physiology
4.
Stapp Car Crash J ; 60: 581-623, 2016 Nov.
Article En | MEDLINE | ID: mdl-27871107

When the Hybrid III 10-year old (HIII-10C) anthropomorphic test device (ATD) was adopted into Code of Federal Regulations (CFR) 49 Part 572 as the best available tool for evaluating large belt-positioning booster seats in Federal Motor Vehicle Safety Standard (FMVSS) No. 213, NHTSA stated that research activities would continue to improve the performance of the HIII-10C to address biofidelity concerns. A significant part of this effort has been NHTSA's in-house development of the Large Omnidirectional Child (LODC) ATD. This prototype ATD is comprised of (1) a head with pediatric mass properties, (2) a neck that produces head lag with Zaxis rotation at the atlanto-occipital joint, (3) a flexible thoracic spine, (4) multi-point thoracic deflection measurement capability, (5) skeletal anthropometry representative of a seated child, and (6) an abdomen that can directly measure belt loading. The objective of this study was to evaluate the LODC by comparing its body region and full-body responses to both standard HIII-10C responses and pediatric biomechanical data. In body region tests, the LODC (BioRank = 1.21) showed improved biofidelity over the HIII-10C (BioRank = 2.70). The LODC also exhibited kinematics more similar to pediatric PMHS kinematics in a reconstruction test. In FMVSS No. 213 tests, the LODC was observed to have lower HIC values with the absence of hard chin-to-chest contacts, indicating that chin-to-chest contact severity is mitigated in the LODC design. LODC abdomen pressures and belt penetrations discriminated between restraint conditions. These results suggest the LODC has biofidelic characteristics that make it a candidate for improved assessment of injury risk in restraint system development.


Accidents, Traffic , Manikins , Models, Biological , Anthropometry , Biomechanical Phenomena , Child , Child Restraint Systems , Equipment Design , Humans , Seat Belts , Weight-Bearing
5.
Stapp Car Crash J ; 55: 281-315, 2011 Nov.
Article En | MEDLINE | ID: mdl-22869312

In ISO Technical Report 9790 (1999) normalized lateral and oblique thoracic force-time responses of PMHS subjected to blunt pendulum impacts at 4.3 m/s were deemed sufficiently similar to be grouped together in a single biomechanical response corridor. Shaw et al. (2006) presented results of paired oblique and lateral thoracic pneumatic ram impact tests to opposite sides of seven PMHS at sub-injurious speed (2.5 m/s). Normalized responses showed that oblique impacts resulted in more deflection and less force, whereas lateral impacts resulted in less deflection and more force. This study presents results of oblique and lateral thoracic impacts to PMHS at higher speeds (4.5 and 5.5 m/s) to assess whether lateral relative to oblique responses are different as observed by Shaw et al. or similar as observed by ISO. Twelve PMHS were impacted by a 23 kg pneumatic ram with a 152.4 mmx304.8 mm rectangular face plate at the level of the xyphoid process in either the pure lateral or 30° anterior-to-lateral oblique direction. Because these tests were potentially injurious, only one test per subject was conducted. Normalized responses demonstrate similar characteristics for both lateral and oblique impacts, indicating that it may be reasonable to combine lateral and oblique responses together at these higher speeds to define characteristic PMHS response as was done by ISO. The small number of tests conducted indicates that less chest compression may be required to obtain serious thoracic injury in oblique impacts as compared to lateral impacts at speeds of 4.5 or 5.5 m/s.


Acceleration , Accidents, Traffic , Thoracic Injuries/physiopathology , Abbreviated Injury Scale , Adult , Aged , Aged, 80 and over , Biomechanical Phenomena , Cadaver , Female , Humans , Male , Models, Biological
...