Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cancer Res ; 81(7): 1667-1680, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33558336

RESUMEN

Insights into oncogenesis derived from cancer susceptibility loci (SNP) hold the potential to facilitate better cancer management and treatment through precision oncology. However, therapeutic insights have thus far been limited by our current lack of understanding regarding both interactions of these loci with somatic cancer driver mutations and their influence on tumorigenesis. For example, although both germline and somatic genetic variation to the p53 tumor suppressor pathway are known to promote tumorigenesis, little is known about the extent to which such variants cooperate to alter pathway activity. Here we hypothesize that cancer risk-associated germline variants interact with somatic TP53 mutational status to modify cancer risk, progression, and response to therapy. Focusing on a cancer risk SNP (rs78378222) with a well-documented ability to directly influence p53 activity as well as integration of germline datasets relating to cancer susceptibility with tumor data capturing somatically-acquired genetic variation provided supportive evidence for this hypothesis. Integration of germline and somatic genetic data enabled identification of a novel entry point for therapeutic manipulation of p53 activities. A cluster of cancer risk SNPs resulted in increased expression of prosurvival p53 target gene KITLG and attenuation of p53-mediated responses to genotoxic therapies, which were reversed by pharmacologic inhibition of the prosurvival c-KIT signal. Together, our results offer evidence of how cancer susceptibility SNPs can interact with cancer driver genes to affect cancer progression and identify novel combinatorial therapies. SIGNIFICANCE: These results offer evidence of how cancer susceptibility SNPs can interact with cancer driver genes to affect cancer progression and present novel therapeutic targets.


Asunto(s)
Resistencia a Antineoplásicos/genética , Neoplasias/genética , Neoplasias/patología , Proteína p53 Supresora de Tumor/genética , Animales , Antineoplásicos/uso terapéutico , Biomarcadores Farmacológicos/metabolismo , Carcinogénesis/genética , Estudios de Casos y Controles , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Mutación de Línea Germinal/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mutación Missense , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Polimorfismo de Nucleótido Simple/fisiología , Pronóstico , Factores de Riesgo , Transducción de Señal/genética , Resultado del Tratamiento
2.
Br J Cancer ; 122(8): 1231-1241, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32147670

RESUMEN

BACKGROUND: Genome-wide association studies (GWASs) have enriched the fields of genomics and drug development. Adrenocortical carcinoma (ACC) is a rare cancer with a bimodal age distribution and inadequate treatment options. Paediatric ACC is frequently associated with TP53 mutations, with particularly high incidence in Southern Brazil due to the TP53 p.R337H (R337H) germline mutation. The heterogeneous risk among carriers suggests other genetic modifiers could exist. METHODS: We analysed clinical, genotype and gene expression data derived from paediatric ACC, R337H carriers, and adult ACC patients. We restricted our analyses to single nucleotide polymorphisms (SNPs) previously identified in GWASs to associate with disease or human traits. RESULTS: A SNP, rs971074, in the alcohol dehydrogenase 7 gene significantly and reproducibly associated with allelic differences in ACC age-of-onset in both cohorts. Patients homozygous for the minor allele were diagnosed up to 16 years earlier. This SNP resides in a gene involved in the retinoic acid (RA) pathway and patients with differing levels of RA pathway gene expression in their tumours associate with differential ACC progression. CONCLUSIONS: These results identify a novel genetic component to ACC development that resides in the retinoic acid pathway, thereby informing strategies to develop management, preventive and therapeutic treatments for ACC.


Asunto(s)
Neoplasias de la Corteza Suprarrenal/genética , Carcinoma Corticosuprarrenal/genética , Genes p53 , Polimorfismo de Nucleótido Simple , Tretinoina/fisiología , Adolescente , Neoplasias de la Corteza Suprarrenal/epidemiología , Carcinoma Corticosuprarrenal/epidemiología , Factores de Edad , Edad de Inicio , Alcohol Deshidrogenasa/genética , Niño , Preescolar , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Incidencia , Lactante , Masculino
3.
Cancers (Basel) ; 11(11)2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31694270

RESUMEN

Adrenocortical carcinoma (ACC) is a rare disease among children. Our goal was to identify prognostic biomarkers in 48 primary ACCs from children (2.83 ± 2.3 y; mean age ± SD) by evaluating the tumor stage and outcome for an age of diagnosis before or after 3 years, and association with ACC cluster of differentiation 8 positive (CD8+) cytotoxic T lymphocytes (CD8+-CTL) and Ki-67 immunohistochemical expression (IHC). Programmed death 1(PD-1)/Programmed death-ligand 1 (PD-L1) immunohistochemistry (IHC) in ACC was analyzed in a second, partially overlapping cohort (N = 19) with a similar mean age. All patients and control children were carriers of the germline TP53 R337H mutation. Survival without recurrence for less than 3 years and death unrelated to disease were excluded. Higher counts of CD8+-CTL were associated with patients diagnosed with ACC at a younger age and stage I, whereas a higher percentage of the Ki-67 labeling index (LI) and Weiss scores did not differentiate disease free survival (DFS) in children younger than 3 years old. No PD-1 staining was observed, whereas weakly PD-L1-positive immune cells were found in 4/19 (21%) of the ACC samples studied. A high CD8+-CTL count in ACC of surviving children is compelling evidence of an immune response against the disease. A better understanding of the options for enhancement of targets for CD8+ T cell recognition may provide insights for future pre-clinical studies.

4.
Sci Rep ; 9(1): 11388, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31388182

RESUMEN

The cation-independent mannose 6-phosphate/insulin-like growth factor-2 receptor (M6P/IGF2R or IGF2R) traffics IGF2 and M6P ligands between pre-lysosomal and extra-cellular compartments. Specific IGF2 and M6P high-affinity binding occurs via domain-11 and domains-3-5-9, respectively. Mammalian maternal Igf2r allele expression exceeds the paternal allele due to imprinting (silencing). Igf2r null-allele maternal transmission results in placenta and heart over-growth and perinatal lethality (>90%) due to raised extra-cellular IGF2 secondary to impaired ligand clearance. It remains unknown if the phenotype is due to either ligand alone, or to both ligands. Here, we evaluate Igf2r specific loss-of-function of the domain-11 IGF2 binding site by replacing isoleucine with alanine in the CD loop (exon 34, I1565A), a mutation also detected in cancers. Igf2rI1565A/+p maternal transmission (heterozygote), resulted in placental and embryonic over-growth with reduced neonatal lethality (<60%), and long-term survival. The perinatal mortality (>80%) observed in homozygotes (Igf2rI1565A/I1565A) suggested that wild-type paternal allele expression attenuates the heterozygote phenotype. To evaluate Igf2r tumour suppressor function, we utilised intestinal adenoma models known to be Igf2 dependent. Bi-allelic Igf2r expression suppressed intestinal adenoma (ApcMin). Igf2rI1565A/+p in a conditional model (Lgr5-Cre, Apcloxp/loxp) resulted in worse survival and increased adenoma proliferation. Growth, survival and intestinal adenoma appear dependent on IGF2R-domain-11 IGF2 binding.


Asunto(s)
Adenoma/genética , Trastornos del Crecimiento/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Neoplasias Intestinales/genética , Herencia Materna , Receptor IGF Tipo 2/genética , Adenoma/patología , Alelos , Animales , Proliferación Celular/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Embrión de Mamíferos/patología , Femenino , Impresión Genómica , Trastornos del Crecimiento/patología , Células HEK293 , Heterocigoto , Homocigoto , Humanos , Hiperplasia/patología , Neoplasias Intestinales/patología , Mutación con Pérdida de Función , Masculino , Ratones , Ratones Transgénicos , Placenta/patología , Embarazo , Dominios Proteicos/genética , Receptor IGF Tipo 2/metabolismo
5.
Oncotarget ; 7(43): 69883-69902, 2016 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-27566565

RESUMEN

Two important protein-protein interactions establish E-cadherin (Cdh1) in the adhesion complex; homophilic binding via the extra-cellular (EC1) domain and cytoplasmic tail binding to ß-catenin. Here, we evaluate whether E-cadherin binding can inhibit ß-catenin when there is loss of Adenomatous polyposis coli (APC) from the ß-catenin destruction complex. Combined conditional loss of Cdh1 and Apc were generated in the intestine, intestinal adenoma and adenoma organoids. Combined intestinal disruption (Cdh1fl/flApcfl/flVil-CreERT2) resulted in lethality, breakdown of the intestinal barrier, increased Wnt target gene expression and increased nuclear ß-catenin localization, suggesting that E-cadherin inhibits ß-catenin. Combination with an intestinal stem cell Cre (Lgr5CreERT2) resulted in ApcΔ/Δ recombination and adenoma, but intact Cdh1fl/fl alleles. Cultured ApcΔ/ΔCdh1fl/fl adenoma cells infected with adenovirus-Cre induced Cdh1fl/fl recombination (Cdh1Δ/Δ), disruption of organoid morphology, nuclear ß-catenin localization, and cells with an epithelial-mesenchymal phenotype. Complementation with adenovirus expressing wild-type Cdh1 (Cdh1-WT) rescued adhesion and ß-catenin membrane localization, yet an EC1 specific double mutant defective in homophilic adhesion (Cdh1-MutW2A, S78W) did not. These data suggest that E-cadherin inhibits ß-catenin in the context of disruption of the APC-destruction complex, and that this function is also EC1 domain dependent. Both binding functions of E-cadherin may be required for its tumour suppressor activity.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/fisiología , Cadherinas/fisiología , Núcleo Celular/metabolismo , Transición Epitelial-Mesenquimal , beta Catenina/metabolismo , Adenoma/etiología , Animales , Antígenos CD , Cadherinas/química , Desarrollo Embrionario , Humanos , Neoplasias Intestinales/etiología , Células MCF-7 , Ratones , Organoides , Dominios Proteicos , Recombinación Genética , Tamoxifeno/farmacología
6.
Proc Natl Acad Sci U S A ; 113(20): E2766-75, 2016 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-27140600

RESUMEN

Among the 15 extracellular domains of the mannose 6-phosphate/insulin-like growth factor-2 receptor (M6P/IGF2R), domain 11 has evolved a binding site for IGF2 to negatively regulate ligand bioavailability and mammalian growth. Despite the highly evolved structural loops of the IGF2:domain 11 binding site, affinity-enhancing AB loop mutations suggest that binding is modifiable. Here we examine the extent to which IGF2:domain 11 affinity, and its specificity over IGF1, can be enhanced, and we examine the structural basis of the mechanistic and functional consequences. Domain 11 binding loop mutants were selected by yeast surface display combined with high-resolution structure-based predictions, and validated by surface plasmon resonance. We discovered previously unidentified mutations in the ligand-interacting surface binding loops (AB, CD, FG, and HI). Five combined mutations increased rigidity of the AB loop, as confirmed by NMR. When added to three independently identified CD and FG loop mutations that reduced the koff value by twofold, these mutations resulted in an overall selective 100-fold improvement in affinity. The structural basis of the evolved affinity was improved shape complementarity established by interloop (AB-CD) and intraloop (FG-FG) side chain interactions. The high affinity of the combinatorial domain 11 Fc fusion proteins functioned as ligand-soluble antagonists or traps that depleted pathological IGF2 isoforms from serum and abrogated IGF2-dependent signaling in vivo. An evolved and reengineered high-specificity M6P/IGF2R domain 11 binding site for IGF2 may improve therapeutic targeting of the frequent IGF2 gain of function observed in human cancer.


Asunto(s)
Factor II del Crecimiento Similar a la Insulina/metabolismo , Receptor IGF Tipo 2/metabolismo , Adulto , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Línea Celular Tumoral , Cristalografía por Rayos X , Evolución Molecular Dirigida , Humanos , Factor II del Crecimiento Similar a la Insulina/química , Factor II del Crecimiento Similar a la Insulina/genética , Modelos Moleculares , Pichia , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptor IGF Tipo 2/antagonistas & inhibidores , Receptor IGF Tipo 2/química , Receptor IGF Tipo 2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...