Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dis Model Mech ; 12(5)2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31036560

RESUMEN

Glycosphingolipid (GSL) accumulation is implicated in the neuropathology of several lysosomal conditions, such as Krabbe disease, and may also contribute to neuronal and glial dysfunction in adult-onset conditions such as Parkinson's disease, Alzheimer's disease and multiple sclerosis. GSLs accumulate in cellular membranes and disrupt their structure; however, how membrane disruption leads to cellular dysfunction remains unknown. Using authentic cellular and animal models for Krabbe disease, we provide a mechanism explaining the inactivation of lipid raft (LR)-associated IGF-1-PI3K-Akt-mTORC2, a pathway of crucial importance for neuronal function and survival. We show that psychosine, the GSL that accumulates in Krabbe disease, leads to a dose-dependent LR-mediated inhibition of this pathway by uncoupling IGF-1 receptor phosphorylation from downstream Akt activation. This occurs by interfering with the recruitment of PI3K and mTORC2 to LRs. Akt inhibition can be reversed by sustained IGF-1 stimulation, but only during a time window before psychosine accumulation reaches a threshold level. Our study shows a previously unknown connection between LR-dependent regulation of mTORC2 activity at the cell surface and a genetic neurodegenerative disease. Our results show that LR disruption by psychosine desensitizes cells to extracellular growth factors by inhibiting signal transmission from the plasma membrane to intracellular compartments. This mechanism serves also as a mechanistic model to understand how alterations of the membrane architecture by the progressive accumulation of lipids undermines cell function, with potential implications in other genetic sphingolipidoses and adult neurodegenerative conditions. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Microdominios de Membrana/metabolismo , Neuronas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Esfingolipidosis/genética , Animales , Encéfalo/metabolismo , Supervivencia Celular/efectos de los fármacos , Citosol/efectos de los fármacos , Citosol/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Lisosomas/efectos de los fármacos , Microdominios de Membrana/efectos de los fármacos , Ratones Endogámicos C57BL , Modelos Biológicos , Neuronas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Psicosina/farmacología , Receptor IGF Tipo 1/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Esfingolipidosis/metabolismo
2.
J Neurosci Res ; 94(11): 1042-8, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27638590

RESUMEN

Sphingolipidoses are a class of inherited diseases that result from the toxic accumulation of undigested sphingolipids in lysosomes and other cellular membranes. Sphingolipids are particularly enriched in cells of the nervous system, and their excessive accumulation during disease has a significant impact on the nervous system. Neuronal dysfunction followed by neurological compromise is a common feature in many of these diseases; however, the underlying mechanisms that cause vulnerability of neurons are not fully understood. The plasma membrane plays a critical role in regulating cellular survival pathways, and its dysfunction has been implicated in neuronal failure in various adult-onset neuropathies. In the context of sphingolipidoses, we hypothesize that gradual accumulation of undigested lipids in plasma membranes causes local disruptions in lipid raft domains, leading to deregulation of multiple signaling pathways important for neuronal survival and function. We propose that defects in downstream signaling as a result of membrane dysfunction are common mechanisms underlying neuronal vulnerability in sphingolipid storage disorders with neurological compromise. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Membrana Celular/metabolismo , Sistema Nervioso/patología , Neuronas/patología , Esfingolipidosis/patología , Esfingolípidos/metabolismo , Animales , Membrana Celular/patología , Humanos , Esfingolípidos/toxicidad
3.
J Neurosci ; 35(4): 1606-16, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25632136

RESUMEN

The atrophy of skeletal muscles in patients with Krabbe disease is a major debilitating manifestation that worsens their quality of life and limits the clinical efficacy of current therapies. The pathogenic mechanism triggering muscle wasting is unknown. This study examined structural, functional, and metabolic changes conducive to muscle degeneration in Krabbe disease using the murine (twitcher mouse) and canine [globoid cell leukodystrophy (GLD) dog] models. Muscle degeneration, denervation, neuromuscular [neuromuscular junction (NMJ)] abnormalities, and axonal death were investigated using the reporter transgenic twitcher-Thy1.1-yellow fluorescent protein mouse. We found that mutant muscles had significant numbers of smaller-sized muscle fibers, without signs of regeneration. Muscle growth was slow and weak in twitcher mice, with decreased maximum force. The NMJ had significant levels of activated caspase-3 but limited denervation. Mutant NMJ showed reduced surface areas and lower volumes of presynaptic terminals, with depressed nerve control, increased miniature endplate potential (MEPP) amplitude, decreased MEPP frequency, and increased rise and decay rate constants. Twitcher and GLD dog muscles had significant capacity to store psychosine, the neurotoxin that accumulates in Krabbe disease. Mechanistically, muscle defects involved the inactivation of the Akt pathway and activation of the proteasome pathway. Our work indicates that muscular dysfunction in Krabbe disease is compounded by a pathogenic mechanism involving at least the failure of NMJ function, activation of proteosome degradation, and a reduction of the Akt pathway. Akt, which is key for muscle function, may constitute a novel target to complement in therapies for Krabbe disease.


Asunto(s)
Leucodistrofia de Células Globoides/complicaciones , Leucodistrofia de Células Globoides/patología , Enfermedades Neuromusculares/etiología , Enfermedades Neuromusculares/metabolismo , Animales , Animales Recién Nacidos , Axones/metabolismo , Axones/patología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Perros , Galactosilceramidasa/genética , Regulación de la Expresión Génica/genética , Leucodistrofia de Células Globoides/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Contracción Muscular/genética , Músculo Esquelético/crecimiento & desarrollo , Enfermedades Neuromusculares/patología , Psicosina/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Potenciales Sinápticos/efectos de los fármacos , Potenciales Sinápticos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...