Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 60
2.
Molecules ; 29(10)2024 May 11.
Article En | MEDLINE | ID: mdl-38792133

L-asparaginases are used in the treatment of acute lymphoblastic leukemia. The aim of this work was to compare the antiproliferative potential and proapoptotic properties of novel L-asparaginases from different structural classes, viz. EcAIII and KpAIII (class 2), as well as ReAIV and ReAV (class 3). The EcAII (class 1) enzyme served as a reference. The proapoptotic and antiproliferative effects were tested using four human leukemia cell models: MOLT-4, RAJI, THP-1, and HL-60. The antiproliferative assay with the MOLT-4 cell line indicated the inhibitory properties of all tested L-asparaginases. The results from the THP-1 cell models showed a similar antiproliferative effect in the presence of EcAII, EcAIII, and KpAIII. In the case of HL-60 cells, the inhibition of proliferation was observed in the presence of EcAII and KpAIII, whereas the proliferation of RAJI cells was inhibited only by EcAII. The results of the proapoptotic assays showed individual effects of the enzymes toward specific cell lines, suggesting a selective (time-dependent and dose-dependent) action of the tested L-asparaginases. We have, thus, demonstrated that novel L-asparaginases, with a lower substrate affinity than EcAII, also exhibit significant antileukemic properties in vitro, which makes them interesting new drug candidates for the treatment of hematological malignancies. For all enzymes, the kinetic parameters (Km and kcat) and thermal stability (Tm) were determined. Structural and catalytic properties of L-asparaginases from different classes are also summarized.


Antineoplastic Agents , Apoptosis , Asparaginase , Cell Proliferation , Humans , Asparaginase/pharmacology , Asparaginase/chemistry , Asparaginase/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Substrate Specificity , HL-60 Cells , Leukemia/drug therapy , Leukemia/enzymology
3.
Int J Mol Sci ; 25(2)2024 Jan 05.
Article En | MEDLINE | ID: mdl-38255781

Intestinal alkaline phosphatase (IAP) is an enzyme that plays a protective role in the gut. This study investigated the effect of IAP treatment on experimental colitis in mice subjected to forced exercise on a high-fat diet. C57BL/6 mice with TNBS colitis were fed a high-fat diet and subjected to forced treadmill exercise with or without IAP treatment. Disease activity, oxidative stress, inflammatory cytokines, and gut microbiota were assessed. Forced exercise exacerbated colitis in obese mice, as evidenced by increased disease activity index (DAI), oxidative stress markers, and proinflammatory adipokines and cytokines. IAP treatment significantly reduced these effects and promoted the expression of barrier proteins in the colonic mucosa. Additionally, IAP treatment altered the gut microbiota composition, favoring beneficial Verrucomicrobiota and reducing pathogenic Clostridia and Odoribacter. IAP treatment ameliorates the worsening effect of forced exercise on murine colitis by attenuating oxidative stress, downregulating proinflammatory biomarkers, and modulating the gut microbiota. IAP warrants further investigation as a potential therapeutic strategy for ulcerative colitis.


Colitis , Gastrointestinal Microbiome , Animals , Mice , Mice, Inbred C57BL , Alkaline Phosphatase , Mice, Obese , Colitis/chemically induced , Colitis/therapy , Anti-Inflammatory Agents , Coloring Agents , Cytokines
4.
Int J Mol Sci ; 25(2)2024 Jan 15.
Article En | MEDLINE | ID: mdl-38256138

Multiple endocrine neoplasia type 1 (MEN1) is a syndrome characterized by tumors in multiple organs. Although being a dominantly inherited monogenic disease, disease phenotypes are unpredictable and differ even among members of the same family. There is growing evidence for the role of modifier genes in the alteration of the course of this disease. However, genome-wide screening data are still lacking. In our study, we addressed the different outcomes of the disease, focusing on pituitary and adrenocortical tumors. By means of exome sequencing we identified the affected signaling pathways that segregated with those symptoms. Most significantly, we identified damaging alterations in numerous structural genes responsible for cell adhesion and migration. Additionally, in the case of pituitary tumors, genes related to neuronal function, survival, and morphogenesis were repeatedly identified, while in patients with adrenocortical tumors, TLR10, which is involved in the regulation of the innate immunity, was commonly modified. Our data show that using exome screening, it is possible to find signatures which correlate with the given clinical MEN1 outcomes, providing evidence that studies addressing modifier effects in MEN1 are reasonable.


Adrenal Cortex Neoplasms , Multiple Endocrine Neoplasia Type 1 , Humans , Multiple Endocrine Neoplasia Type 1/diagnosis , Multiple Endocrine Neoplasia Type 1/genetics , Exome , Cell Adhesion , Signal Transduction/genetics
5.
Medicina (Kaunas) ; 60(1)2024 Jan 13.
Article En | MEDLINE | ID: mdl-38256409

Background and Objectives: Biochemical and molecular regulation of both adaptive and pathological responses of heart tissue to ischemic injury is widely investigated. However, it is still not fully understood. Several biomarkers are tested as predictors of left ventricle (LV) remodeling after myocardial infarction (MI). The aim of this study was to assess the relationship between selected microRNAs (miRNAs) and LV function and morphology in patients after MI. Materials and Methods: Selected miRNAs related to heart failure were assessed in the acute phase of MI: miR-150-3p, miR-21-5p, miR-19b-3p, miR-155-5p, miR-22-5p. Echocardiography with 3D imaging was performed at baseline and after 6 months. Remodeling was defined as >20% increase in LV end-diastolic volume, whereas reverse remodeling was defined as >10% reduction in LV end-systolic volume. Results: Eighty patients entered the registry. Remodeling occurred in 26% and reverse remodeling was reported in 51% of patients. In the presented study, none of the analyzed miRNAs were found to be a significant LV remodeling predictor. The observed correlations between miRNAs and other circulating biomarkers of myocardial remodeling were relatively weak. Conclusions: Our analysis does not demonstrate an association between the analyzed miRNAs and LV remodeling in patients with MI.


Circulating MicroRNA , MicroRNAs , Myocardial Infarction , Humans , Ventricular Remodeling , Myocardial Infarction/genetics , Syndrome , Hospitals , Biomarkers
6.
Front Immunol ; 14: 1227369, 2023.
Article En | MEDLINE | ID: mdl-37720230

Introduction: Granulomatosis with polyangiitis (GPA) is a small vessel vasculitis with a complex pathomechanism. Organ damage in GPA is also mediated by extracellular trap formation (NETosis). We analyzed the functional status of phosphoproteins modulating NETosis in neutrophils by the mammalian target of rapamycin (mTOR) pathway in GPA along with NETosis biomarkers. Methods: Phosphoproteins levels measured in isolated neutrophils from 42 patients with GPA (exacerbation n=21; remission n=21) and 21 healthy controls were compared to serum biomarkers of the disease. Results: Neutrophils in active disease manifested lowered levels of phosphorylated mTOR(Ser2448), PTEN(Ser380) and ULK1(Ser555), whereas phosphorylated GSK-3α/ß(Ser21/Ser9) was elevated. Exacerbation of GPA was characterized by elevated neutrophil dsDNA in serum, circulating mitochondrial DNA, and DNA-MPO complexes. A significant negative correlation between mTOR or PTEN phosphoproteins and biomarkers of GPA activity was also present, reflecting the clinical activity score of GPA. Positive correlations between phosphorylated GSK-3 α/ß and circulating mtDNA, DNA-MPO complexes, neutrophil-released dsDNA, or circulating proteins were also significant. Increased serum levels of IGFBP-2, TFF-3, CD147, and CHI3L1 accompanied GPA exacerbation, whereas DPP-IV levels were the lowest in active GPA. Using a principal component analysis basigin, PTEN and mTOR had the highest loadings on the discrimination function, allowing classification between active, remission, and control subjects with 98% performance. Conclusions: We present evidence that inhibited mTOR signaling accompanies NETosis in patients with GPA. The functional status of phosphoproteins suggests simultaneous activation of NETosis and autophagy. These results give rise to the study of autophagy as a mechanism underlying granuloma formation in GPA.


Granulomatosis with Polyangiitis , Leukocyte Disorders , Humans , Neutrophils , Glycogen Synthase Kinase 3 , TOR Serine-Threonine Kinases , Signal Transduction , DNA, Mitochondrial
7.
Eur J Pharmacol ; 944: 175566, 2023 Apr 05.
Article En | MEDLINE | ID: mdl-36739078

BACKGROUND: Targeting cell death to induce favorable functional and morphological changes within atherosclerotic plaques has long been postulated as a promising anti-atherosclerotic strategy. In this regard, inhibition of dipeptidyl peptidases 8/9 has received special attention in the context of chronic inflammatory diseases due to its regulatory role in macrophage death in vivo. METHODS: The present study investigates the influence of prolonged treatment with 1G244 - an inhibitor of dipeptidyl peptidases 8/9 - on the development of the advanced atherosclerosis plaque in apoE-knockout mice, using morphometric and molecular methods. RESULTS: 1G244 administration has led to a reduction in atherosclerotic plaque size in an apoE-knockout mice model. Moreover, it reduced the content of in-plaque macrophages, attributed by immunohistochemical phenotyping to the pro-inflammatory M1-like activation state of these cells. Inhibition of dipeptidyl peptidases 8/9 augmented the lytic form of death response of activated macrophages in-vitro. CONCLUSIONS: In summary, inhibition of DPP 8/9 elicited an anti-atherosclerotic effect in apoE-/- mice, which can be attributed to the lytic form of death induction in activated macrophages, as assessed by the in vitro BMDM model. This, in turn, results in a reduction of the plaque area without its transformation towards a rupture-prone morphology.


Atherosclerosis , Plaque, Atherosclerotic , Mice , Animals , Macrophages , Atherosclerosis/metabolism , Plaque, Atherosclerotic/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/pharmacology , Mice, Knockout, ApoE , Apolipoproteins E , Mice, Inbred C57BL , Mice, Knockout
8.
Environ Toxicol Pharmacol ; 96: 103996, 2022 Nov.
Article En | MEDLINE | ID: mdl-36228992

Chronic exposure to PM2.5 contributes to the pathogenesis of numerous disorders, although the underlying mechanisms remain unknown. The study investigated whether exposure of human monocytes to PM2.5 is associated with alterations in miRNAs. Monocytes were exposed in vitro to PM2.5 collected during winter and summer, followed by miRNA isolation from monocytes. Additionally, in 140 persons chronically exposed to air pollution, some miRNA patterns were isolated from serum seasonally. Between-season differences in chemical PM2.5 composition were observed. Some miRNAs were expressed both in monocytes and in human serum. MiR-34c-5p and miR-223-5p expression was more pronounced in winter. Bioinformatics analyses showed that selected miRNAs were involved in the regulation of several pathways. The expression of the same miRNA species in monocytes and serum suggests that these cells are involved in the production of miRNAs implicated in the development of disorders mediated by inflammation, oxidative stress, proliferation, and apoptosis after exposure to PM2.5.


Air Pollutants , Air Pollution , MicroRNAs , Humans , Particulate Matter/toxicity , MicroRNAs/genetics , Monocytes , Air Pollution/adverse effects , Apoptosis , Air Pollutants/toxicity
9.
Biomedicines ; 10(10)2022 Oct 01.
Article En | MEDLINE | ID: mdl-36289725

Chemerin is one of the specialized pro-resolving mediators that participate in the early phase of inflammation and contribute to the initiation of the pro-resolving response. There is a paucity of data regarding the time course of chemerin during acute infections. We aimed to evaluate the sequence of inflammatory responses in the acute COVID-19 phase throughout onset and resolution of inflammation. We evaluated changes in selected biomarkers in COVID-19 survivors on the 7-day and 28-day follow up. Chemerin was lower in patients with baseline moderate/severe disease at day 7 compared with asymptomatic patients and individuals with mild illness (7265 [5526−9448] vs. 8730 [6888−11,058] pg/mL; p = 0.03). Only in patients with moderate/severe disease, but not in those with mild symptoms, were chemerin concentrations decreased one week after infection onset compared with baseline (7265 [5526−9448] vs. 8866 [6383−10,690] pg/mL; p < 0.05) with a subsequent increase on the 28-day follow up (9313 [7353−11,033] pg/mL; p < 0.05). Resolution of inflammation in the group of moderate/severe SARS-CoV2 infection was associated with increasing serum concentrations of chemerin, contrary to pro-inflammatory cytokines and adipokines (pentraxin 3, TNFα, resistin, leptin). A similar pattern of angiopoietin-2 dynamics may suggest signs of enhanced vascularization as a consequence of acute SARS-CoV2 infection.

10.
Colloids Surf B Biointerfaces ; 220: 112943, 2022 Dec.
Article En | MEDLINE | ID: mdl-36274400

The research was focused on alternative treatment techniques, separating immediate and long-term reconstruction stages. The work involved development of ceramic materials dedicated to reconstruction of the temporomandibular joint area. They were based on alumina (aluminum oxide) and characterized by varying porosities. A broad spectrum of studies was conducted to test the proposed material and determine its suitability for mandibular reconstruction. They compared the effects of substrate properties of ceramic materials in terms of biocompatibility, microbiology and systemic toxicity in in vivo studies. Finally it was concluded that Alumina LithaLox 350D is best suited for jawbone implants.


Ceramics , Neoplasms , Humans , Ceramics/chemistry , Aluminum Oxide/pharmacology , Aluminum Oxide/chemistry , Bone and Bones , Anti-Bacterial Agents , Materials Testing
11.
Front Immunol ; 13: 991991, 2022.
Article En | MEDLINE | ID: mdl-36275746

The first line of antiviral immune response in the lungs is secured by the innate immunity. Several cell types take part in this process, but airway macrophages (AMs) are among the most relevant ones. The AMs can phagocyte infected cells and activate the immune response through antigen presentation and cytokine release. However, the precise role of macrophages in the course of SARS-CoV-2 infection is still largely unknown. In this study, we aimed to evaluate the role of AMs during the SARS-CoV-2 infection using a co-culture of fully differentiated primary human airway epithelium (HAE) and human monocyte-derived macrophages (hMDMs). Our results confirmed abortive SARS-CoV-2 infection in hMDMs, and their inability to transfer the virus to epithelial cells. However, we demonstrated a striking delay in viral replication in the HAEs when hMDMs were added apically after the epithelial infection, but not when added before the inoculation or on the basolateral side of the culture. Moreover, SARS-CoV-2 inhibition by hMDMs seems to be driven by cell-to-cell contact and not by cytokine production. Together, our results show, for the first time, that the recruitment of macrophages may play an important role during the SARS-CoV-2 infection, limiting the virus replication and its spread.


COVID-19 , Humans , SARS-CoV-2 , Epithelium , Lung , Macrophages , Cytokines , Antiviral Agents
12.
iScience ; 25(7): 104594, 2022 Jul 15.
Article En | MEDLINE | ID: mdl-35756892

Recent studies showed that SARS-CoV-2 can infect adult human pancreas and trigger pancreatic damage. Here, using human fetal pancreas samples and 3D differentiation of human pluripotent cells into pancreatic endocrine cells, we determined that SARS-CoV-2 receptors ACE2, TMPRSS2, and NRP1 are expressed in precursors of insulin-producing pancreatic ß-cells, rendering them permissive to SARS-CoV-2 infection. We also show that SARS-CoV-2 enters and undergoes efficient replication in human multipotent pancreatic and endocrine progenitors in vitro. Moreover, we investigated mechanisms by which SARS-CoV-2 enters pancreatic cells, and found that ACE2 mediates the entry, while NRP1 and TMPRSS2 do not. Surprisingly, we found that in pancreatic progenitors, SARS-CoV-2 enters cells via cathepsin-dependent endocytosis, which is a different route than in respiratory tract. Therefore, pancreatic spheroids might serve as a model to study candidate drugs for endocytosis-mediated viral entry inhibition and to investigate whether SARS-CoV-2 infection may affect pancreas development, possibly causing lifelong health consequences.

13.
Obes Surg ; 32(7): 2426-2432, 2022 07.
Article En | MEDLINE | ID: mdl-35576095

PURPOSE: Endoscopic intragastric balloon (IGB) placement is a minimally invasive treatment for morbid obesity that is sometimes used as a preparatory step before surgical intervention. This study was performed to analyze the changes in the stomach wall induced by IGB placement, with particular emphasis on pathomorphology, inflammatory markers, and tissue growth factors. MATERIAL AND METHODS: In total, 30 patients with morbid obesity were prospectively analyzed. A total of 16 patients with body mass index (BMI) ≥ 53 kg/m2 underwent two-stage treatment comprising IGB placement followed by laparoscopic sleeve gastrectomy (LSG) (IGB group), while 14 patients underwent one-stage LSG (non-IGB group). The gastric specimens removed during LSG were examined. The two groups were compared regarding the surgical results, microscopic structure and inflammatory process exponents of the stomach wall, and receptors for selected tissue growth factors. RESULTS: The IGB group had a longer median hospital stay than that of the non-IGB group. Compared with the non-IGB group, the IGB group had a thicker stomach wall, more submucosal fibrosis, and increased amounts of growth factors and inflammatory markers. CONCLUSION: Patients with IGB placement before LSG showed greater changes in the stomach wall than those of patients who received LSG alone. IGB placement was associated with stomach muscle layer thickening, submucosal fibrosis, and increased levels of inflammatory markers and tissue growth factors.


Gastric Balloon , Obesity, Morbid , Oral Submucous Fibrosis , Humans , Obesity, Morbid/surgery , Prospective Studies , Stomach/surgery , Treatment Outcome , Weight Loss
14.
Clin Exp Immunol ; 208(1): 103-113, 2022 05 13.
Article En | MEDLINE | ID: mdl-35380163

Granulomatosis with polyangiitis is a chronic systemic inflammation of small vessels characterized by circulating anti-proteinase 3 antibodies. MicroRNAs are short transcripts specifically inhibiting protein translation. Neutrophils can release extracellular vesicles (EVs). In this study, we characterized profile of microRNA trafficked by EVs in GPA. Fifty patients with GPA were enrolled in the study, 25 at acute phase and 25 in remission. EVs were isolated from the blood serum, characterized by their number, size distribution. Following unbiased screening for microRNA expression, differentially expressed candidates were measured by quantitative real-time PCR. Circulating DNA-myeloperoxidase complexes and apoptosis-related transcripts in peripheral blood neutrophils were quantified. We identified four differentially expressed microRNAs from EVs in granulomatosis with polyangiitis (GPA). MirRs-223-3p, 664a-3p, and 200b-3p were overexpressed and miR-769-5p suppressed in the disease. A distinction between GPA and healthy controls was the best for miR-223-3p, whereas miR-664a-3p discriminated between active vs. remission of GPA. Correct classification of the disease based on multivariate discriminant analysis was between 92% for acute phase and 85% for all study participants. Bioinformatics tools identified genes transcripts potentially targeted by the microRNAs belonging to pathways of focal adhesion, mTOR signaling and neutrophil extracellular traps formation. Two microRNAs positively correlating with the disease activity were involved in neutrophil extracellular traps formation and apoptosis inhibition. A comprehensive characteristics of microRNAs trafficked in bloodstream inside EVs correlates well with our understanding of the mechanisms of GPA and suggests the importance of EVs in progression of the disease.


Circulating MicroRNA , Extracellular Traps , Extracellular Vesicles , Granulomatosis with Polyangiitis , MicroRNAs , Humans , Circulating MicroRNA/metabolism , Neutrophils , MicroRNAs/genetics , Granulomatosis with Polyangiitis/genetics , Inflammation/metabolism
15.
Int J Mol Sci ; 23(6)2022 Mar 09.
Article En | MEDLINE | ID: mdl-35328382

Inflammatory bowel diseases (IBD) are commonly considered as Crohn's disease and ulcerative colitis, but the possibility that the alterations in gut microbiota and oxidative stress may affect the course of experimental colitis in obese physically exercising mice treated with the intestinal alkaline phosphatase (IAP) has been little elucidated. Mice fed a high-fat-diet (HFD) or normal diet (ND) for 14 weeks were randomly assigned to exercise on spinning wheels (SW) for 7 weeks and treated with IAP followed by intrarectal administration of TNBS. The disease activity index (DAI), grip muscle strength test, oxidative stress biomarkers (MDA, SOD, GSH), DNA damage (8-OHdG), the plasma levels of cytokines IL-2, IL-6, IL-10, IL-12p70, IL-17a, TNF-α, MCP-1 and leptin were assessed, and the stool composition of the intestinal microbiota was determined by next generation sequencing (NGS). The TNBS-induced colitis was worsened in obese sedentary mice as manifested by severe colonic damage, an increase in DAI, oxidative stress biomarkers, DNA damage and decreased muscle strength. The longer running distance and weight loss was observed in mice given IAP or subjected to IAP + SW compared to sedentary ones. Less heterogeneous microbial composition was noticed in sedentary obese colitis mice and this effect disappeared in IAP + SW mice. Absence of Alistipes, lower proportion of Turicibacter, Proteobacteria and Faecalibacterium, an increase in Firmicutes and Clostridium, a decrease in oxidative stress biomarkers, 8-OHdG content and proinflammatory cytokines were observed in IAP + SW mice. IAP supplementation in combination with moderate physical activity attenuates the severity of murine colitis complicated by obesity through a mechanism involving the downregulation of the intestinal cytokine/chemokine network and oxidative stress, the modulation of the gut microbiota and an improvement of muscle strength.


Colitis , Gastrointestinal Microbiome , Alkaline Phosphatase , Animals , Biomarkers/metabolism , Colitis/chemically induced , Cytokines/metabolism , Disease Models, Animal , Intestinal Mucosa/metabolism , Mice , Mice, Obese , Obesity , Oxidative Stress
16.
Obes Surg ; 32(5): 1586-1600, 2022 05.
Article En | MEDLINE | ID: mdl-35277793

Obesity may be treated by bariatric procedures and is related to enterohormone release modulation. Nevertheless, a majority of commonly used surgical procedures have a significant impact on vagus nerve function by breaking the connections with its gastric branches. In the case of an intragastric balloon (BAL), this interaction is unclear. However, BAL-induced weight reduction is not long-lasting. Interestingly, this method has not been used in combination with vagotomy (VAG). Thus, we evaluated, for the first time, the short- and long-term effects of combined BAL and VAG using the animal-based translational model and compared these effects with sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB). Wistar rats were fed a high-calorie diet for 8 weeks to induce obesity before SG, RYGB, BAL + / - VAG. Animals' weight and eating behaviors were monitored weekly. After 90 days, serum samples were collected to evaluate postprandial and fasting GLP-1, GIP, PYY, ghrelin, glucagon, insulin, leptin, and pancreatic polypeptide concentrations by fluorescent assay. VAG, SG, RYGB, and BAL + VAG significantly reduced body weight 30 and 90 days after surgery. BAL alone induced temporal weight reduction observed after 30 days, reversed after 90 days. Calories intake was reduced at the first half of the observation period in all groups. Fluid intake was reduced in all groups except SG and BAL. Enterohormone profile for BAL + VAG was comparable to SG and RYGB but not BAL. VAG and BAL + VAG but not BAL alone maintain weight reduction, alimentary intake changes, and enterohormone release after long-term observation. VAG may improve the effectiveness of bariatric procedures for obesity treatment in clinical practice.


Bariatric Surgery , Gastric Balloon , Gastric Bypass , Obesity, Morbid , Animals , Bariatric Surgery/methods , Gastrectomy/methods , Gastric Bypass/methods , Obesity/surgery , Obesity, Morbid/surgery , Rats , Rats, Wistar , Vagotomy , Weight Loss/physiology
17.
Antioxid Redox Signal ; 36(4-6): 189-210, 2022 02.
Article En | MEDLINE | ID: mdl-33678013

Aims: Nonsteroidal anti-inflammatory drugs, including ketoprofen, induce adverse effects within the gastrointestinal (GI)-tract. Hydrogen sulfide (H2S) is an antioxidative gaseous mediator contributing to GI-protection. We aimed to evaluate the GI safety of a novel H2S-releasing derivative of ketoprofen (ATB-352) versus classic ketoprofen and the molecular mechanisms of their activity after chronic treatment in experimental animal models. Results: Ketoprofen (10 mg/kg/day) administered intragastrically for 7 days in contrast with ATB-352 (14 mg/kg/day) reduced mucosal H2S content inducing GI damage with significantly increased injury score, altered intestinal microbiome profile, and modulation of more than 50% of 36 investigated molecular sensors (e.g., mammalian target of rapamycin or suppressor of cytokine signaling 3 [SOCS3]). Polypharmacy with aspirin (10 mg/kg/day) enhanced ketoprofen toxicity not affecting GI safety of ATB-352. Omeprazole (20 mg/kg/day) decreased ketoprofen-induced injury to the level of ATB-352 alone. Both compounds combined or not with aspirin or omeprazole maintained the ability to inhibit cyclooxygenase (COX) activity manifested by decreased prostaglandin production. Innovation and Conclusions: Ketoprofen-induced H2S-production decrease and intestinal microbiome profile alterations lead to GI toxicity observed on macro-/microscopic and molecular levels. Ketoprofen but not ATB-352 requires concomitant treatment with omeprazole to eliminate GI adverse effects. ATB-352 applied alone or in a polypharmacy setting with aspirin effectively inhibited COX and maintained GI safety due to H2S-release. Neither compound affected DNA oxidation in the GI mucosa, but ATB-352 had lower impact on molecular oxidative/inflammatory response pathways and intestinal microbiome. The GI safety of ATB-352 could be due to the involvement of heme oxygenase 1 and SOCS3 pathway activation. Antioxid. Redox Signal. 36, 189-210.


Hydrogen Sulfide , Microbiota , Animals , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Gastrointestinal Tract , Humans , Hydrogen Sulfide/pharmacology , Mammals , Polypharmacy
18.
Pol Arch Intern Med ; 132(2)2022 02 28.
Article En | MEDLINE | ID: mdl-34846110

INTRODUCTION: The main impact of myocardial infarction (MI) is shifting from acute mortality to adverse remodeling, chronic left ventricular (LV) dysfunction, and heart failure. OBJECTIVES: The aim of this study was to assess relationships between levels of circulating biomarkers and the function of LV after MI. PATIENTS AND METHODS: This was a prospective study of 80 patients with MI treated with percutaneous coronary intervention. Novel biomarkers including mid­regional pro­adrenomedullin (MR­proADM), Notch­1, syndecan­4, myeloperoxidase, S­100 protein, soluble ST­2, as well as markers of inflammatory response and tissue injury: galectin­3, C­reactive protein (CRP), lactate dehydrogenase (LDH), and interleukin­6 (IL­6) were assessed in the acute phase of MI. Echocardiography was performed at baseline and 6 month Results: Adverse remodeling, defined as more than 20% increase in LV end­diastolic volume, occurred in 26% of patients. Reverse remodeling (>10% reduction in LV end­systolic volume) was observed in 52% of patients. In the univariable analysis, higher levels of MR­proADM and LDH were predictors of adverse remodeling and higher levels of MR ­proADM, LDH, CRP, and IL ­6 were negative predictors of reverse remodeling. In the multivariable model, LDH remained an independent predictor of adverse remodeling (odds ratio [OR], 3.13; 95% CI, 1.42-8.18; P = 0.003) and a negative predictor of reverse remodeling (OR, 0.37; 95% CI, 0.17-0.8; P = 0.005). CONCLUSIONS: LDH and MR ­proADM seem to be promising biomarkers of adverse remodeling. On the other hand, higher levels of these biomarkers were associated with reduced chance of occurrence of favorable reverse remodeling in MI patients. However, further studies on larger groups of patients are necessary to confirm these data.


Myocardial Infarction , Percutaneous Coronary Intervention , Ventricular Dysfunction, Left , Adrenomedullin , Biomarkers , C-Reactive Protein/metabolism , Humans , L-Lactate Dehydrogenase , Myocardial Infarction/complications , Myocardial Infarction/surgery , Percutaneous Coronary Intervention/adverse effects , Prospective Studies , Ventricular Dysfunction, Left/complications , Ventricular Function, Left/physiology , Ventricular Remodeling/physiology
19.
Ecotoxicol Environ Saf ; 230: 113112, 2022 Jan 15.
Article En | MEDLINE | ID: mdl-34953274

BACKGROUND AND AIMS: Exposure to environmental nanoparticles is related to the adverse impact on health, including cardiovascular system. Various forms of nanoparticles have been reported to interact with endothelium and induce inflammation. However, the potential role of nanoparticles in the pathogenesis of atherosclerosis and their mechanisms of action are still unclear. The aim of this study was to investigate the effect of two broadly used nanomaterials, which also occur in natural environment - silicon oxide (SiO2) and ferric oxide (Fe2O3) in the form of nanoparticles (NPs) - on the development of atherosclerosis. METHODS: We used apolipoprotein E-knockout mice exposed to silica and ferric oxide nanoparticles in a whole body inhalation chamber. RESULTS: Inhaled silica nanoparticles augmented the atherosclerotic lesions and increased the percentage of pro-inflammatory M1 macrophages in both the plaque and the peritoneum in apoE-/- mice. Exposure to ferric oxide nanoparticles did not enhance atherogenesis process, however, it caused significant changes in the atherosclerotic plaque composition (elevated content of CD68-positive macrophages and enlarged necrotic core accompanied by the decreased level of M1 macrophages). Both silica and ferric oxide NPs altered the phenotype of T lymphocytes in the spleen by promoting polarization towards Th17 cells. CONCLUSIONS: Exposure to silica and ferric oxide nanoparticles exerts impact on atherosclerosis development and plaque composition. Pro-atherogenic abilities of silica nanoparticles are associated with activation of pro-inflammatory macrophages.

20.
Front Immunol ; 12: 748097, 2021.
Article En | MEDLINE | ID: mdl-34659245

The SARS-CoV-2 infection [coronavirus disease 2019 (COVID-19)] is associated with severe lymphopenia and impaired immune response, including expansion of myeloid cells with regulatory functions, e.g., so-called low-density neutrophils, containing granulocytic myeloid-derived suppressor cells (LDNs/PMN-MDSCs). These cells have been described in both infections and cancer and are known for their immunosuppressive activity. In the case of COVID-19, long-term complications have been frequently observed (long-COVID). In this context, we aimed to investigate the immune response of COVID-19 convalescents after a mild or asymptomatic course of disease. We enrolled 13 convalescents who underwent a mild or asymptomatic infection with SARS-CoV-2, confirmed by a positive result of the PCR test, and 13 healthy donors without SARS-CoV-2 infection in the past. Whole blood was used for T-cell subpopulation and LDNs/PMN-MDSCs analysis. LDNs/PMN-MDSCs and normal density neutrophils (NDNs) were sorted out by FACS and used for T-cell proliferation assay with autologous T cells activated with anti-CD3 mAb. Serum samples were used for the detection of anti-SARS-CoV-2 neutralizing IgG and GM-CSF concentration. Our results showed that in convalescents, even 3 months after infection, an elevated level of LDNs/PMN-MDSCs is still maintained in the blood, which correlates negatively with the level of CD8+ and double-negative T cells. Moreover, LDNs/PMN-MDSCs and NDNs showed a tendency for affecting the production of anti-SARS-CoV-2 S1 neutralizing antibodies. Surprisingly, our data showed that in addition to LDNs/PMN-MDSCs, NDNs from convalescents also inhibit proliferation of autologous T cells. Additionally, in the convalescent sera, we detected significantly higher concentrations of GM-CSF, indicating the role of emergency granulopoiesis. We conclude that in mild or asymptomatic COVID-19 convalescents, the neutrophil dysfunction, including propagation of PD-L1-positive LDNs/PMN-MDSCs and NDNs, is responsible for long-term endotype of immunosuppression.


Antibodies, Neutralizing/blood , COVID-19/complications , Myeloid-Derived Suppressor Cells/immunology , Neutrophils/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Viral/blood , Asymptomatic Infections , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/pathology , Cell Proliferation , Female , Granulocyte-Macrophage Colony-Stimulating Factor/blood , Humans , Immunocompromised Host/immunology , Immunoglobulin G/blood , Lymphocyte Activation/immunology , Male , Middle Aged , Post-Acute COVID-19 Syndrome
...