Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Oncogene ; 33(15): 1934-44, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23624916

RESUMEN

Given the failure of chemo- and biotherapies to fight advanced pancreatic cancer, one major challenge is to identify critical events that initiate invasion. One priming step in epithelia carcinogenesis is the disruption of epithelial cell anchorage to the basement membrane which can be provided by hemidesmosomes (HDs). However, the existence of HDs in pancreatic ductal epithelium and their role in carcinogenesis remain unexplored. HDs have been explored in normal and cancer pancreatic cells, and patient samples. Unique cancer cell models where HD assembly can be pharmacologically manipulated by somatostatin/sst2 signaling have been then used to investigate the role and molecular mechanisms of dynamic HD during pancreatic carcinogenesis. We surprisingly report the presence of mature type-1 HDs comprising the integrin α6ß4 and bullous pemphigoid antigen BP180 in the human pancreatic ductal epithelium. Importantly, HDs are shown to disassemble during pancreatic carcinogenesis. HD breakdown requires phosphoinositide 3-kinase (PI3K)-dependent induction of the matrix-metalloprotease MMP-9, which cleaves BP180. Consequently, integrin α6ß4 delocalizes to the cell-leading edges where it paradoxically promotes cell migration and invasion through S100A4 activation. As S100A4 in turn stimulates MMP-9 expression, a vicious cycle maintains BP180 cleavage. Inactivation of this PI3K-MMP-9-S100A4 signaling loop conversely blocks BP180 cleavage, induces HD reassembly and inhibits cell invasion. We conclude that mature type-1 HDs are critical anchoring structures for the pancreatic ductal epithelium whose disruption, upon PI3K activation during carcinogenesis, provokes pancreatic cancer cell migration and invasion.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Hemidesmosomas/patología , Invasividad Neoplásica/patología , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Autoantígenos/metabolismo , Western Blotting , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Movimiento Celular/fisiología , Epitelio/metabolismo , Epitelio/patología , Técnica del Anticuerpo Fluorescente , Hemidesmosomas/metabolismo , Humanos , Inmunohistoquímica , Microscopía Confocal , Colágenos no Fibrilares/metabolismo , Neoplasias Pancreáticas/patología , Interferencia de ARN , Receptores de Somatostatina/metabolismo , Colágeno Tipo XVII
3.
Br J Cancer ; 101(4): 637-44, 2009 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-19672266

RESUMEN

BACKGROUND: Activator protein-2alpha (AP-2alpha) is a transcription factor that belongs to the family of AP-2 proteins that have essential roles in tumorigenesis. Indeed, AP-2alpha is considered as a tumour-suppressor gene in different tissues such as colonic, prostatic or breast epithelial cells. Moreover, AP-2alpha also participates in the control of colon and breast cancer cells sensitivity towards chemotherapeutic drugs. Despite its potential interest, very few data are available regarding the roles of AP-2alpha in pancreatic cancer. METHODS: We have developed a stable pancreatic CAPAN-1 cell line overexpressing AP-2alpha. Consequences of overexpression were studied in terms of in vivo cell growth, gene expression, migration capacity and chemosensitivity. RESULTS: In vivo tumour growth of CAPAN-1 cells overexpressing AP-2alpha was significantly decreased by comparison to control cells. An altered expression pattern of cell cycle-controlling factors (CDK-4, CDK-6, cyclin-G1, p27(kip1) and p57(kip2)) was observed in AP-2alpha-overexpressing clones by microarrays and western blot analysis. Promoter activity and ChIP analysis indicated that AP-2alpha induces p27(kip1) protein levels by direct binding to and transactivation of its promoter. Moreover, AP-2alpha overexpression increased the chemosensitivity of CAPAN-1 cells to low doses of gemcitabine and reduced their in vitro migration capacity. CONCLUSION: Our data suggested that AP-2alpha overexpression could be exploited to decrease in vivo tumour growth of pancreatic cancer cells and to increase their sensitivity to gemcitabine.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos/genética , Neoplasias Pancreáticas/genética , Factor de Transcripción AP-2/genética , Animales , Western Blotting , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/efectos de los fármacos , Desoxicitidina/farmacología , Expresión Génica , Humanos , Ratones , Ratones Desnudos , Microscopía Confocal , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias Pancreáticas/metabolismo , Factor de Transcripción AP-2/metabolismo , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
4.
Cell Mol Life Sci ; 65(19): 3110-7, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18810319

RESUMEN

The suppressor of translation initiation 4E-BP1 functions as a key regulator in cellular growth, differentiation, apoptosis and survival. While the control of 4E-BP1 activity via phosphorylation has been widely studied, the molecular mechanisms and the signaling pathways that govern 4E-BP1 gene expression are largely unknown. Here we show that inactivation of phosphatidylinositol 3-kinase (PI3K) consequent to stable expression of the antiproliferative somatostatin receptor 2 (sst2) in pancreatic cancer cells leads to transcriptional accumulation of the hypophosphorylated forms of 4E-BP1 protein. In cancer cells, while 4E-BP1 gene promoter is maintained repressed in a PI3K-dependent mechanism, sst2-dependent inactivation of the PI3K/Akt pathway releases 4E-BP1 gene transcription. Furthermore, the use of a pharmacological inhibitor and dominant-negative or -positive mutants of PI3K all affect 4E-BP1 protein expression and promoter activity in different cell lines. These data show that, in addition to inactivation of 4E-BP1 via hyperphosphorylation, signaling through the PI3K pathway silences 4E-BP1 gene transcription.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Silenciador del Gen , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Secuencia de Bases , Proteínas de Ciclo Celular , Línea Celular , Activación Enzimática , Genes Reporteros , Humanos , Datos de Secuencia Molecular , Ornitina Descarboxilasa/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfoproteínas/genética , Biosíntesis de Proteínas , Proteínas Represoras/genética , Transducción de Señal/fisiología
5.
Cell Death Differ ; 14(2): 197-208, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16645635

RESUMEN

Somatostatin is a multifunctional hormone that modulates cell proliferation, differentiation and apoptosis. Mechanisms for somatostatin-induced apoptosis are at present mostly unsolved. Therefore, we investigated whether somatostatin receptor subtype 2 (sst2) induces apoptosis in the nontransformed murine fibroblastic NIH3T3 cells. Somatostatin receptor subtype 2 expression induced an executioner caspase-mediated apoptosis through a tyrosine phosphatase SHP-1 (Src homology domain phosphatase-1)-dependent stimulation of nuclear factor kappa B (NF-kappaB) activity and subsequent inhibition of the mitogen-activated protein kinase JNK. Tumor necrosis factor alpha (TNFalpha) stimulated both NF-kappaB and c-Jun NH2-terminal kinase (JNK) activities, which had opposite action on cell survival. Importantly, sst2 sensitized NIH3T3 cells to TNFalpha-induced apoptosis by (1) upregulating TNFalpha receptor protein expression, and sensitizing to TNFalpha-induced caspase-8 activation; (2) enhancing TNFalpha-mediated activation of NF-kappaB, resulting in JNK inhibition and subsequent executioner caspase activation and cell death. We have here unraveled a novel signaling mechanism for a G protein-coupled receptor, which directly triggers apoptosis and crosstalks with a death receptor to enhance death ligand-induced apoptosis.


Asunto(s)
Apoptosis , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Receptores de Somatostatina/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Somatostatina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Activación Enzimática/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Ratones , Modelos Biológicos , Imitación Molecular/efectos de los fármacos , Células 3T3 NIH , Fosforilación/efectos de los fármacos , Proteína Fosfatasa 1 , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Transducción de Señal/efectos de los fármacos , Transfección , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/farmacología
6.
Ann Oncol ; 17(12): 1733-42, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16801334

RESUMEN

BACKGROUND: There is a need for novel antitumor agents that demonstrate efficacy in currently refractory tumors without adding to the toxicity of therapy. The somatostatin analogs, which have demonstrated antineoplastic activities in experimental tumor models, and good tolerability and safety profiles are attractive candidates. MATERIALS AND METHODS: Data from preclinical studies provide evidence for direct and indirect mechanisms by which somatostatin analogs exert antitumor effects. RESULTS: Direct antitumor activities, mediated through somatostatin receptors (sst(1)-sst(5)) expressed in tumor cells, include blockade of autocrine/paracrine growth-promoting hormone and growth factor production, inhibition of growth factor-mediated mitogenic signals and induction of apoptosis. Indirect antitumor effects include inhibition of growth-promoting hormone and growth factor secretion, and antiangiogenic actions. Many human tumors express more than one somatostatin receptor subtype, with sst(2) being predominant. Somatostatin analogs such as octreotide and lanreotide, which present a high affinity for sst(2), are in current clinical use to alleviate symptoms in patients with endocrine tumors, and radiolabeled somatostatin analogs have been developed for diagnosis and radiotherapy. CONCLUSIONS: While the rationale exists for the use of somatostatin analogs as antitumor agents, studies are ongoing to identify analogs with activity across the range of receptor subtypes to maximize the potential of such treatment.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Somatostatina/análogos & derivados , Humanos , Somatostatina/uso terapéutico
7.
Radiat Prot Dosimetry ; 119(1-4): 164-7, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16581927

RESUMEN

A systematic study of photothermally stimulated defects creation processes is carried out by the thermally stimulated luminescence (TSL) method for a large number of undoped and doped PbWO4 crystals under irradiation at 80-180 K in the 3.4-4.3 eV energy range. The activation energy Ea for the regular exciton state disintegration is found to be approximately 0.1 eV. For defect-related states disintegration, Ea varies in the crystals studied from 0.03 to 0.36 eV. The origin of the defect-related states is discussed. The conclusion is made that not only a release of charge carriers but also charge transfer processes take place under UV irradiation of PbWO4 crystals.


Asunto(s)
Cristalización/métodos , Dosimetría Termoluminiscente/métodos , Compuestos de Tungsteno/química , Compuestos de Tungsteno/efectos de la radiación , Rayos Ultravioleta , Relación Dosis-Respuesta en la Radiación , Ensayo de Materiales , Dosis de Radiación , Compuestos de Tungsteno/análisis
8.
J Endocrinol Invest ; 28(11 Suppl International): 5-9, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16625838

RESUMEN

Since its discovery three decades ago as an inhibitor of GH release from the pituitary gland, somatostatin has attracted much attention because of its functional role in the regulation of a wide variety of physiological functions in the brain, pituitary, pancreas, gastrointestinal tract, adrenals, thyroid, kidney and immune system. Its actions include inhibition of endocrine and exocrine secretions, modulation of neurotransmission, motor and cognitive functions, inhibition of intestinal motility, absorption of nutrients and ions and vascular contractility. In addition, the peptide controls the proliferation of normal and tumor cells. Its action is mediated by a family of G protein-coupled receptors [somatostatin receptor (SSTR)1-SSTR5] that are widely distributed in normal and cancer cells. Direct antitumor activities, mediated through SSTR expressed in tumor cells, include blockade of autocrine/paracrine growth-promoting hormone and growth factor production, inhibition of growth factor-mediated mitogenic signals and induction of apoptosis. Indirect antitumor effects include inhibition of growth-promoting hormone and growth factor secretion, and antiangiogenic actions. Many human tumors express more than one SSTR subtype, with SSTR2 being predominant. These receptors represent the molecular basis for the clinical use of somatostatin analogs in the treatment of endocrine tumors and their in vivo localization. This review covers the present knowledge in SSTR biology and signaling.


Asunto(s)
Receptores de Somatostatina/fisiología , Somatostatina/fisiología , Antineoplásicos , División Celular , Cognición , Humanos , Actividad Motora , Neoplasias/patología , Somatostatina/análogos & derivados , Somatostatina/farmacología , Transmisión Sináptica
9.
Dig Liver Dis ; 36 Suppl 1: S2-7, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15077905

RESUMEN

Somatostatin is an inhibitory neuropeptide, which acts on various targets throughout the body to regulate a variety of physiological functions including inhibition of endocrine and exocrine secretions, modulation of neurotransmission, motor and cognitive functions, inhibition of intestinal motility, absorption of nutrients and ions, vascular contractility and inhibition of normal and tumour cell proliferation. It exerts its effects through interaction with five somatostatin receptors (sst1-sst5), which belong to the family of G-protein-coupled receptors with seven transmembrane spanning domains and are variably expressed in a variety of tumours such as gastroenteropancreatic tumours, pituitary tumours, and carcinoid tumours. This review covers the present knowledge regarding the molecular mechanisms involved in somatostatin antineoplastic activity. Evidence that sst2 receptor acts as a tumour suppressor is also discussed.


Asunto(s)
División Celular/fisiología , Receptores de Somatostatina/fisiología , Somatostatina/fisiología , Proteínas Activadoras de GTPasa/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología
10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(6 Pt 2): 066616, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12188860

RESUMEN

The problem of evaluating dissipative effects in macroscopic quantum tunneling is re-examined for the case of Josephson junctions, with the adoption of an alternative way with respect to several previously proposed and, in some cases, contradictory approaches. The system, which consists of a junction coupled to a transmission line, is analyzed both analytically and numerically. A test of the theoretical model, as compared to the experimental results available, is performed in accordance with a criterion based on a shortening of the traversal time.

11.
Ann Endocrinol (Paris) ; 63(2 Pt 3): 2S13-8, 2002 Apr.
Artículo en Francés | MEDLINE | ID: mdl-12037498

RESUMEN

Somatostatin and its stable analogues (octreotide, lanreotide and vapreotide) exert an antiproliferative effect on various normal and cancerous cells both in vitro and in vivo. This effect results from different mechanisms: an indirect effect by the inhibition of release of growth factors and trophic hormones (GH, IGF-1, insulin, gastrin, EGF), an inhibition of angiogenesis processes (endothelial cell proliferation, VEGF release, monocyte activity), an immunomodulatory effect (lymphocyte proliferation, interleukine or cytokine release, NK activity) and a direct effect on target cells. This direct antiproliferative effect is mediated through specific somatostatin receptors. Among them, sst(1), sst(2), sst(4) and sst(5) have been implicated in vitro in the G1-G0 cell cycle blockade, sst(3) and sst(2) mediating the apoptotic effect of somatostatin. In addition, sst(2) acts as an antioncogene in human pancreatic cancer cells. Coupling to membrane tyrosine phosphatases (SHP-1, SHP-2) is the main transduction pathway involved in the antiproliferative effect mediated by sst receptors. The dissociation observed clinically between a frequent antisecretory response and an inconstant antitumor effect after administration of somatostatin analogues may reflect an absence of expression or coupling of the receptor(s) involved in antiproliferative effect. Moreover, a desensitization or mutation of these receptors may also occur in tumors. All the potential mechanism involved should be elucidated in order to improve or better target the antitumor effect of somatostatin analogues clinically used.


Asunto(s)
Antagonistas de Hormonas/farmacología , Somatostatina/análogos & derivados , Somatostatina/farmacología , Animales , División Celular/efectos de los fármacos , Humanos , Receptores de Somatostatina/efectos de los fármacos
12.
Biol Reprod ; 65(6): 1732-42, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11717135

RESUMEN

Immature porcine Sertoli cells have been reported to be targets for the regulatory peptide somatostatin (SRIF), which inhibits the basal and FSH-induced proliferation of Sertoli cells through a decrease of cAMP production. In the present study, we show that SRIF inhibits both basal and FSH-stimulated expression of the stem cell factor (SCF), a Sertoli cell-specific gene. The SRIF-mediated inhibition of forskolin-triggered, but not of 8-bromoadenosine-cAMP-triggered, SCF mRNA expression demonstrates the involvement of adenylyl cyclase in underlying peptide actions. Moreover, these effects require functional coupling of specific plasma membrane receptors to adenylyl cyclase via inhibitory G proteins, because pertussis toxin prevents SRIF-mediated inhibition of SCF mRNA expression. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assays suggest the involvement of sst2 receptors in SRIF actions on Sertoli cells. The biological relevance of these data is supported by an SRIF-mediated decrease in SCF-induced incorporation of [(3)H]thymidine in isolated seminiferous tubules. In situ hybridization and confocal microscopy show that, in seminiferous tubules only, spermatogonia display both c-kit and sst2 receptors. Taken together, these results suggest that SCF-stimulated DNA synthesis can be inhibited by SRIF in spermatogonia, but not in Sertoli and peritubular cells. Combined RT-PCR and immunohistochemical approaches point toward spermatogonia and Leydig cells as the source of testicular SRIF. These data argue in favor of paracrine/autocrine SRIF actions in testis.


Asunto(s)
ADN/biosíntesis , Expresión Génica/efectos de los fármacos , Túbulos Seminíferos/metabolismo , Células de Sertoli/metabolismo , Somatostatina/farmacología , Factor de Células Madre/genética , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Toxina de Adenilato Ciclasa , Adenilil Ciclasas/metabolismo , Animales , Western Blotting , Colforsina/farmacología , Hormona Folículo Estimulante/farmacología , Proteínas de Unión al GTP/fisiología , Hibridación in Situ , Masculino , Microscopía Confocal , Toxina del Pertussis , Proteínas Proto-Oncogénicas c-kit/análisis , ARN Mensajero/análisis , Receptores de Somatostatina/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espermatogonias/química , Factor de Células Madre/farmacología , Porcinos , Factores de Virulencia de Bordetella/farmacología
13.
FASEB J ; 15(12): 2300-2, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11511520

RESUMEN

Somatostatin receptor sst2 is an inhibitory G protein-coupled receptor, which inhibits normal and tumor cell growth by a mechanism involving the tyrosine phosphatase SHP-1. We reported previously that SHP-1 associates transiently with and is activated by sst2 and is a critical component for sst2 growth inhibitory signaling. Here, we demonstrate that in Chinese hamster ovary cells expressing sst2, SHP-1 is associated at the basal level with the neuronal nitric oxide synthase (nNOS). Following sst2 activation by the somatostatin analog RC-160, SHP-1 rapidly recruits nNOS tyrosine dephosphorylates and activates it. The resulting NO activates guanylate cyclase and inhibits cell proliferation. Coexpression of a catalytically inactive SHP-1 mutant with sst2 blocks RC-160-induced nNOS dephosphorylation and activation, as well as guanylate cyclase activation. In mouse pancreatic acini, RC-160 treatment reduces nNOS tyrosine phosphorylation accompanied by an increase of its activity. By opposition, in acini from viable motheaten (mev/mev) mice, which express a markedly inactive SHP-1, RC-160 has no effect on nNOS activity. Finally, expression of a dominant-negative form of nNOS prevents both RC-160-induced p27 up-regulation and cell proliferation inhibition. We therefore identified nNOS as a novel SHP-1 substrate critical for sst2-induced cell-growth arrest.


Asunto(s)
Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa/fisiología , Proteínas Tirosina Fosfatasas/metabolismo , Receptores de Somatostatina/fisiología , Transducción de Señal , Animales , Células CHO , División Celular , Cricetinae , GMP Cíclico/biosíntesis , Péptidos y Proteínas de Señalización Intracelular , Ratones , Modelos Biológicos , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo I , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 6 , Proteínas Tirosina Fosfatasas/fisiología , Somatostatina/farmacología
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 63(2 Pt 2): 025102, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11308528

RESUMEN

A model for tunneling based on stochastic processes proves to be capable of interpreting the results of two experiments at the microwave scale. The first of these consisted of measuring the penetration time in a subcutoff waveguide; the second one, in measuring the shift of a beam in a frustrated total reflection. Said shift which is a measurement of the traversal time of the barrier. In both cases, a peak in the real-time component was evidenced, as predicted by the theoretical model.

15.
J Biol Chem ; 276(16): 13461-8, 2001 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-11278805

RESUMEN

The sst2 somatostatin receptor is an inhibitory G protein-coupled receptor, which exhibits anti-tumor properties. Expression of sst2 is lost in most human pancreatic cancers. We have cloned 2090 base pairs corresponding to the genomic DNA region upstream of the mouse sst2 (msst2) translation initiation codon (ATG). Deletion reporter analyses in mouse pituitary AtT-20 and human pancreatic cancer PANC-1, BxPC-3, and Capan-1 cells identify a region from nucleotide -260 to the ATG codon (325 base pairs) showing maximal activity, and a region between nucleotides -2025 and -260 likely to comprise silencer or transcriptional suppressor elements. In PANC-1 and AtT-20 cells, transforming growth factor (TGF)-beta up-regulates msst2 transcription. Transactivation is mediated by Smad4 and Smad3. The cis-acting region responsible for such regulation is comprised between nucleotides -1115 and -972 and includes Sp1 and CAGA-box sequences. Expression of Smad4 in Smad4-deficient Capan-1 and BxPC-3 cells restores TGF-beta-dependent and -independent msst2 transactivation. Expression of Smad4 in BxPC-3 cells reestablishes both endogenous sst2 expression and somatostatin-mediated inhibition of cell growth. These findings demonstrate that msst2 is a new target gene for TGF-beta transcription regulation and underlie the possibility that loss of Smad4 contributes to the lack of sst2 expression in human pancreatic cancer, which in turn may contribute to a stimulation of tumor growth.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Regiones Promotoras Genéticas , Receptores de Somatostatina/genética , Transactivadores/metabolismo , Activación Transcripcional , Factor de Crecimiento Transformador beta/farmacología , Regiones no Traducidas 5'/genética , Animales , Secuencia de Bases , Clonación Molecular , Codón , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Biblioteca Genómica , Humanos , Luciferasas/genética , Ratones , Datos de Secuencia Molecular , Neoplasias Pancreáticas , Neoplasias Hipofisarias , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Eliminación de Secuencia , Proteína Smad4 , Transcripción Genética , Activación Transcripcional/efectos de los fármacos , Células Tumorales Cultivadas
16.
Chemotherapy ; 47 Suppl 2: 30-9, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11275700

RESUMEN

Over the past decade, antiproliferative effects of somatostatin and analogs have been reported in many somatostatin receptor-positive normal and tumor cell types. Regarding the molecular mechanisms involved, somatostatin or analogs mediate their action through both indirect and direct effects. Somatostatin acts through five somatostatin receptors (SSTR1-5) which are variably expressed in normal and tumor cells. These receptors regulate a variety of signal transduction pathways including inhibition of adenylate cyclase, regulation of ion channels, regulation of serine/threonine and tyrosine kinases and phosphatases. This review focuses on recent advances in biological mechanisms involved in the antineoplastic activity of somatostatin and analogs.


Asunto(s)
Antineoplásicos Hormonales/farmacología , División Celular/efectos de los fármacos , Somatostatina/farmacología , Animales , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Receptores de Somatostatina/metabolismo , Transducción de Señal , Somatostatina/análogos & derivados
17.
Gastroenterology ; 120(1): 200-9, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11208729

RESUMEN

BACKGROUND & AIMS: The somatostatin receptor SST2 mediates the antiproliferative effect of stable somatostatin analogues. SST2 gene expression is lost in most human pancreatic carcinomas. We investigated the mechanisms that could be involved in this defect. METHODS: SST2 gene structure was investigated by sequencing and restriction fragment length polymorphism. Characterization of the polymorphism was performed by electrophoretic mobility shift, cross-linking, and transcription assays. RESULTS: No major deletion of the SST2 coding sequence was found in pancreatic carcinoma specimens, but 2 point mutations were frequently detected in the promoter sequence at positions -83 (A-->G) and -57 (C-->G) from the major transcription initiation site. These mutations were present in pancreatic cancer but also in normal pancreatic tissues or leukocytes and thus correspond to a genetic polymorphism. In the 2 human pancreatic cancer cell lines MiaPaCa-2 and AsPC-1, the naturally occurring mutation -57G had no effect on transcription of SST2 gene, whereas -83G mutation reduced it by 60%-70%. We showed that the -83G mutation creates a specific binding site for the nuclear factor I. Cotransfection experiments showed that the nuclear factor I-A1.1 isoform was responsible for SST2 promoter repression. CONCLUSIONS: The -83G polymorphism identified on human SST2 gene promoter is responsible for the specific fixation of nuclear factor I and repression of SST2 transcription in human pancreatic cancer cells. However, its contribution to pancreatic tumorigenesis remains unknown.


Asunto(s)
Proteínas de Unión al ADN , Neoplasias Pancreáticas , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas/genética , Receptores de Somatostatina/genética , Factores de Transcripción , Transcripción Genética/fisiología , Regiones no Traducidas 5'/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Humanos , Técnicas In Vitro , Mutación/genética , Factores de Transcripción NFI , Proteínas Nucleares , Páncreas/fisiología , ARN Mensajero/genética , Células Tumorales Cultivadas , Proteína 1 de Unión a la Caja Y
18.
J Physiol Paris ; 94(3-4): 205-10, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-11087998

RESUMEN

Somatostatin acts as an inhibitory peptide of various secretory and proliferative responses. Its effects are mediated by a family of G-protein-coupled receptors (sst1-5) that can couple to diverse signal transduction pathways such as inhibition of adenylate cyclase and guanylate cyclase, modulation of ionic conductance channels, and protein dephosphorylation. The five receptors bind the natural peptide with high affinity but only sst2, sst5 and sst3 bind the short synthetic analogues. Somatostatin negatively regulates the growth of various normal and tumour cells. This effect is mediated indirectly through inhibition of secretion of growth-promoting factors, angiogenesis and modulation of the immune system. Somatostatin can also act directly through sst receptors present on target cells. The five receptors are expressed in various normal and tumour cells, the expression of each receptor being receptor subtype and cell type specific. According to the receptor subtypes, distinct signal transduction pathways are involved in the antiproliferative action of somatostatin. Sst1, 4 and 5 modulate the MAP kinase pathway and induce G1 cell cycle arrest. Sst3 and sst2 promote apoptosis by p53-dependent and -independent mechanisms, respectively.


Asunto(s)
Sistemas Neurosecretores/fisiología , Receptores de Somatostatina/fisiología , Transducción de Señal/fisiología , Animales , División Celular/fisiología , Humanos , Sistemas Neurosecretores/citología
19.
Digestion ; 62 Suppl 1: 27-32, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10940684

RESUMEN

Somatostatin is a neuropeptide produced by neuroendocrine, inflammatory and immune cells in response to different stimuli. Somatostatin inhibits various cellular functions including secretions, motility and proliferation. Its action is mediated by five specific somatostatin receptors (sst1-sst5) which belong to the G protein-coupled receptor family. The five receptors bind the natural peptide with high affinity but only sst2, sst5 and sst3 bind the short synthetic analogues used to treat patients with neuroendocrine tumors. The five receptors are expressed in various normal and tumor cells, the expression of each receptor being receptor subtype and cell-type specific. In neuroendocrine tumors, sst2 is highly expressed whereas in advanced pancreatic adenocarcinoma as well as high-grade colorectal carcinomas, its expression is lost. Each receptor subtype is coupled to different signal transduction pathways through G protein-dependent and -independent mechanisms. The synthesis of selective agonists for each receptor and the recent development of genetic animal models with selective deletion of receptor subtype provide tools for establishing some of the biological roles of the receptors. sst1, 2 and 5 mediate inhibition of GH secretion whereas sst2 and sst5 mediate inhibition of glucagon secretion and insulin secretion, respectively.


Asunto(s)
Receptores de Somatostatina/fisiología , Somatostatina/fisiología , Animales , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Transducción de Señal , Somatostatina/análogos & derivados , Regulación hacia Arriba
20.
Proc Natl Acad Sci U S A ; 97(16): 9180-5, 2000 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-10900262

RESUMEN

The sst2 somatostatin receptor mediates the antiproliferative effects of somatostatin analogs. The present study demonstrates that stable expression of sst2 in the hamster pancreatic cancer cells PC-1 and PC-1.0 activates an autocrine negative loop leading to an in vitro inhibition of cell proliferation. In vivo studies conducted in Syrian golden hamsters after orthotopic implantation of PC-1.0 cells showed that both tumor growth and metastatic progression of allografts containing 100% of sst2-expressing cells were significantly inhibited for up to 20 days after implantation, as compared with control allografts that did not express sst2. A local antitumor bystander effect was observed after induction of mixed tumors containing a 1:3 ratio of sst2-expressing cells to control cells. Tumor volume and incidence of metastases of mixed tumors were significantly reduced at day 13 post implantation. This effect decreased with time as at day 20, growth of mixed tumors was similar to that of control tumors. After administration of the cytotoxic somatostatin conjugate AN-238 on day 13, antitumor bystander effect observed in mixed tumors was significantly extended to day 20. We also observed that in vitro invasiveness of sst2-expressing PC-1.0 cells was significantly reduced. Tyrosine dephosphorylation of E-cadherin may participate in restoring the E-cadherin function, reducing in turn pancreatic cancer cell motility and invasiveness. This dephosphorylation depends on the tyrosine phosphatase src homology 2-containing tyrosine phosphatase 1 (SHP-1) positively coupled to sst2 receptor. The inhibitory effect of sst2 gene expression on pancreatic cancer growth and invasion combined with chemotherapy with targeted cytotoxic somatostatin analog administration provides a rationale for a therapeutic approach to gene therapy based on in vivo sst2 gene transfer.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Citotoxinas/administración & dosificación , Proteínas Fúngicas/fisiología , Proteínas Activadoras de GTPasa , Neoplasias Pancreáticas/patología , Proteínas de Saccharomyces cerevisiae , Animales , Cadherinas/metabolismo , División Celular/efectos de los fármacos , División Celular/genética , División Celular/fisiología , Cricetinae , Doxorrubicina/administración & dosificación , Doxorrubicina/análogos & derivados , Proteínas Fúngicas/genética , Péptidos y Proteínas de Señalización Intracelular , Masculino , Mesocricetus , Metástasis de la Neoplasia/prevención & control , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosforilación , Proteína Fosfatasa 1 , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteína Tirosina Fosfatasa no Receptora Tipo 6 , Proteínas Tirosina Fosfatasas/metabolismo , Pirroles/administración & dosificación , Células Tumorales Cultivadas , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...