Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 49
1.
Anal Methods ; 16(17): 2678-2683, 2024 May 03.
Article En | MEDLINE | ID: mdl-38623781

Caffeine is present in a large number of beverages and is an additive used in dietary supplements. Therefore, the concern about its quality and safety for consumers has been increasing and hence requires faster and simpler analytical methods to determine the caffeine amount. The high-throughput analysis is an appropriate solution to pharmaceuticals, bioanalysis, forensic and food laboratory routines. In this sense, Venturi easy ambient sonic-spray ionization mass spectrometry (V-EASI-MS), a specific ambient ionization source, is suitable to enable direct analysis of sample solutions in real time and is appropriate to be coupled to liquid chromatography (LC). The development of an on-line solid phase extraction system coupled to V-EASI-MS optimizes the advantages of LC-MS hyphenation by enhancing the figures of merit of the analytical method according to AOAC guidelines and simultaneously minimizing the runtime analysis to 1.5 min per sample, as well as sample preparation steps and solvent consumption, which is currently a challenge for quantitative applications of ambient ionization MS.


Caffeine , Dietary Supplements , Solid Phase Extraction , Spectrometry, Mass, Electrospray Ionization , Caffeine/analysis , Solid Phase Extraction/methods , Dietary Supplements/analysis , Spectrometry, Mass, Electrospray Ionization/methods , High-Throughput Screening Assays/methods , Chromatography, Liquid/methods
2.
Article En | MEDLINE | ID: mdl-38324875

Bartonella spp. are bacteria responsible for neglected diseases worldwide. Bartonella henselae is the species most associated with human infections. It is associated with a large spectrum of clinical manifestations and is potentially fatal. The identification of Bartonella spp. is considered a challenge in clinical routine. These bacteria are fastidious, and the time required to isolate them varies from one to six weeks. MALDI-TOF mass spectrometry has emerged as an application for research on Bartonella spp. , and has still been little explored. We investigated whether three different B. henselae strains with different growth times-14 and 28 days-could be correctly identified by MALDI-TOF mass spectra fingerprint comparison and matching. We found that the spectra from strains with different growth times do not match each other, leading to misidentification. We suggest creating database entries with multiple spectra from strains with different growth times to increase the chances of accurate identification of Bartonella spp. by MALD-TOF MS.


Bartonella henselae , Bartonella , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
3.
Chem Biodivers ; 21(4): e202301978, 2024 Apr.
Article En | MEDLINE | ID: mdl-38379213

The comparative metabolic profiling and their biological properties of eight extracts obtained from diverse parts (leaves, flowers, roots) of the medicinal plant Flourensia fiebrigii S.F. Blake, a chemotype growing in highland areas (2750 m a.s.l.) of northwest Argentina, were investigated. The extracts were analysed by GC-MS and UHPLC-MS/MS. GC-MS analysis revealed the presence of encecalin (relative content: 24.86 %) in ethereal flower extract (EF) and this benzopyran (5.93 %) together sitosterol (11.35 %) in the bioactive ethereal leaf exudate (ELE). By UHPLC-MS/MS the main compounds identified in both samples were: limocitrin, (22.31 %), (2Z)-4,6-dihydroxy-2-[(4-hydroxy-3,5-dimethoxyphenyl)methylidene]-1-benzofuran-3-one (21.31 %), isobavachin (14.47 %), naringenin (13.50 %), and sternbin, (12.49 %). Phytocomplexes derived from aerial parts exhibited significant activity against biofilm production of Pseudomonas aeruginosa and Staphylococcus aureus, reaching inhibitions of 74.7-99.9 % with ELE (50 µg/mL). Notably, the extracts did not affect nutraceutical and environmental bacteria, suggesting a selective activity. ELE also showed the highest reactive species scavenging ability. This study provides valuable insights into the potential applications of this chemotype.


Asteraceae , Tandem Mass Spectrometry , Gas Chromatography-Mass Spectrometry , Plant Extracts/pharmacology , Plant Extracts/metabolism , Chromatography, High Pressure Liquid , Plant Leaves/metabolism , Asteraceae/metabolism
4.
J Sci Food Agric ; 2024 Feb 09.
Article En | MEDLINE | ID: mdl-38334323

BACKGROUND: Hot trub is a macronutrient- and micronutrient-rich by-product generated in the brewing industry, which is still underrated as a raw material for reprocessing purposes. In this context, this study aimed to investigate the extraction of bitter acids' and xanthohumol from hot trub as well as identify the significance of parameters for the process. The research assessed various extraction parameters, such as pH, ethanol concentration, temperature, and solid-to-liquid ratio, using a Plackett-Burman design. RESULTS: Ethanol concentration and pH were the most significant parameters affecting extraction yield. ß-acids were found to be the principal components of the bitter acids, with a maximum concentration near 16 mg g-1 , followed by iso-α-acids and α-acids achieving 6 and 3.6 mg g-1 , respectively. The highest yields of bitter acids were observed in the highest ethanol concentration, while pH was relevant to extraction process in treatments with low ethanol ratios. Concerning the xanthohumol extraction, the approach achieved maximum concentration (239 µg g-1 ) in treatments with ethanol concentration above 30%. Despite their variances, the phytochemicals exhibited comparable extraction patterns, indicating similar interactions with macromolecules. Moreover, the characterization of the solid residues demonstrated that the extraction process did not bring about any alterations to the chemical and total protein profiles. CONCLUSION: Ethanol concentration was found to have the most significant impact on the extraction of bitter acids and xanthohumol, while temperature had no significant effect. The solid remains resulting from the extraction showed potential for use as a protein source. © 2024 Society of Chemical Industry.

5.
Article En | LILACS-Express | LILACS | ID: biblio-1535309

ABSTRACT Bartonella spp. are bacteria responsible for neglected diseases worldwide. Bartonella henselae is the species most associated with human infections. It is associated with a large spectrum of clinical manifestations and is potentially fatal. The identification of Bartonella spp. is considered a challenge in clinical routine. These bacteria are fastidious, and the time required to isolate them varies from one to six weeks. MALDI-TOF mass spectrometry has emerged as an application for research on Bartonella spp. , and has still been little explored. We investigated whether three different B. henselae strains with different growth times—14 and 28 days—could be correctly identified by MALDI-TOF mass spectra fingerprint comparison and matching. We found that the spectra from strains with different growth times do not match each other, leading to misidentification. We suggest creating database entries with multiple spectra from strains with different growth times to increase the chances of accurate identification of Bartonella spp. by MALD-TOF MS.

6.
Expert Rev Proteomics ; 20(11): 267-280, 2023.
Article En | MEDLINE | ID: mdl-37830362

INTRODUCTION: Bipolar disorder (BD) is a complex psychiatric disease characterized by alternating mood episodes. As for any other psychiatric illness, currently there is no biochemical test that is able to support diagnosis or therapeutic decisions for BD. In this context, the discovery and validation of biomarkers are interesting strategies that can be achieved through proteomics and metabolomics. AREAS COVERED: In this descriptive review, a literature search including original articles and systematic reviews published in the last decade was performed with the objective to discuss the results of BD proteomic and metabolomic profiling analyses and indicate proteins and metabolites (or metabolic pathways) with potential clinical value. EXPERT OPINION: A large number of proteins and metabolites have been reported as potential BD biomarkers; however, most studies do not reach biomarker validation stages. An effort from the scientific community should be directed toward the validation of biomarkers and the development of simplified bioanalytical techniques or protocols to determine them in biological samples, in order to translate proteomic and metabolomic findings into clinical routine assays.


Bipolar Disorder , Humans , Bipolar Disorder/diagnosis , Bipolar Disorder/metabolism , Proteomics/methods , Metabolomics/methods , Biomarkers/metabolism , Metabolic Networks and Pathways
7.
Mol Omics ; 19(10): 743-755, 2023 Dec 04.
Article En | MEDLINE | ID: mdl-37581345

Microbial biostimulants have emerged as a sustainable alternative to increase the productivity and quality of important crops. Despite this, the effects of the treatment on plant metabolism are poorly understood. Thus, this study investigated the metabolic response of common bean (Phaseolus vulgaris) related to the treatment with a biostimulant obtained from the extract of Corynebacterium glutamicum that showed positive effects on the development, growth, and yield of crops previously. By untargeted metabolomic analysis using UHPLC-MS/MS, plants and seeds were subjected to treatment with the biostimulant. Under ideal growth conditions, the plants treated exhibited higher concentration levels of glutamic acid, nicotiflorin and glycosylated lipids derived from linolenic acid. The foliar application of the biostimulant under water stress conditions increased the chlorophyll content by 17% and induced the accumulation of flavonols, mainly quercetin derivatives. Also, germination seed assays exhibited longer radicle lengths for seeds treated compared to the untreated control even in the absence of light (13-18% increase, p-value <0.05). Metabolomic analysis of the seeds indicated changes in concentration levels of amino acids (tryptophan, phenylalanine, tyrosine, glutamine, and arginine) and their derivatives. The results point out the enhancement of abiotic stress tolerance and the metabolic processes triggered in this crop associated with the treatment with the biostimulant, giving the first insights into stress tolerance mechanisms in P. vulgaris.


Corynebacterium glutamicum , Phaseolus , Phaseolus/chemistry , Phaseolus/metabolism , Phaseolus/microbiology , Tandem Mass Spectrometry , Stress, Physiological , Chlorophyll/metabolism
8.
Sci Total Environ ; 895: 165189, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37391131

Uptake and transformation of arsenic (As) by living organisms can alter its distribution and biogeochemical cycles in the environment. Although well known for its toxicity, several aspects of As accumulation and biological transformation by field species are still little explored. In this study, the bioaccumulation and speciation of As in phytoplankton and zooplankton from five soda lakes in the Brazilian Pantanal wetland were studied. Such lakes exhibited contrasting biogeochemical characteristics along an environmental gradient. Additionally, the influence of contrasting climatic events was assessed by collecting samples during an exceptional drought in 2017 and a flood in 2018. Total As (AsTot) content and speciation were determined using spectrometric techniques, while a suspect screening of organoarsenicals in plankton samples was carried out by high-resolution mass spectrometry. Results showed that AsTot content ranged from 16.9 to 62.0 mg kg-1 during the dry period and from 2.4 to 12.3 mg kg-1 during the wet period. The bioconcentration and bioaccumulation factors (BCF and BAF) in phytoplankton and zooplankton were found to be highly dependent on the lake typology, which is influenced by an ongoing evapoconcentration process in the region. Eutrophic and As-enriched lakes exhibited the lowest BCF and BAF values, possibly due to the formation of non-labile As complexes with organic matter or limited uptake of As by plankton caused by high salinity stress. The season played a decisive role in the results, as significantly higher BCF and BAF values were observed during the flooding event when the concentration of dissolved As in water was low. The diversity of As species was found to be dependent on the lake typology and on the resident biological community, cyanobacteria being responsible for a significant portion of As metabolism. Arsenosugars and their degradation products were detected in both phytoplankton and zooplankton, providing evidence for previously reported detoxification pathways. Although no biomagnification pattern was observed, the diet seemed to be an important exposure pathway for zooplankton.


Arsenic , Plankton , Animals , Plankton/chemistry , Lakes/chemistry , Arsenic/metabolism , Bioaccumulation , Salinity , Zooplankton/metabolism , Phytoplankton/metabolism
9.
Metabolites ; 13(5)2023 Apr 27.
Article En | MEDLINE | ID: mdl-37233641

In this study, we obtained a lipidomic profile of plasma samples from drug-naïve patients with schizophrenia (SZ) and bipolar disorder (BD) in comparison to healthy controls. The sample cohort consisted of 30 BD and 30 SZ patients and 30 control individuals. An untargeted lipidomics strategy using liquid chromatography coupled with high-resolution mass spectrometry was employed to obtain the lipid profiles. Data were preprocessed, then univariate (t-test) and multivariate (principal component analysis and orthogonal partial least squares discriminant analysis) statistical tools were applied to select differential lipids, which were putatively identified. Afterward, multivariate receiver operating characteristic tests were performed, and metabolic pathway networks were constructed, considering the differential lipids. Our results demonstrate alterations in distinct lipid pathways, especially in glycerophospholipids, sphingolipids and glycerolipids, between SZ and BD patients. The results obtained in this study may serve as a basis for differential diagnosis, which is crucial for effective treatment and improving the quality of life of patients with psychotic disorders.

10.
Anal Bioanal Chem ; 415(18): 4367-4384, 2023 Jul.
Article En | MEDLINE | ID: mdl-36717401

Emerging insights from metabolomic-based studies of major depression disorder (MDD) are mainly related to biochemical processes such as energy or oxidative stress, in addition to neurotransmission linked to specific metabolite intermediates. Hub metabolites represent nodes in the biochemical network playing a critical role in integrating the information flow in cells between metabolism and signaling pathways. Limited technical-scientific studies have been conducted to understand the effects of ayahuasca (Aya) administration in the metabolism considering MDD molecular context. Therefore, this work aims to investigate an in vitro primary astrocyte model by untargeted metabolomics of two cellular subfractions: secretome and intracellular content after pre-defined Aya treatments, based on DMT concentration. Mass spectrometry (MS)-based metabolomics data revealed significant hub metabolites, which were used to predict biochemical pathway alterations. Branched-chain amino acid (BCAA) metabolism, and vitamin B6 and B3 metabolism were associated to Aya treatment, as "housekeeping" pathways. Dopamine synthesis was overrepresented in the network results when considering the lowest tested DMT concentration (1 µmol L-1). Building reaction networks containing significant and differential metabolites, such as nicotinamide, L-DOPA, and L-leucine, is a useful approach to guide on dose decision and pathway selection in further analytical and molecular studies.


Banisteriopsis , Depressive Disorder, Major , Depressive Disorder, Major/drug therapy , Metabolomics/methods , Computational Biology , Metabolome
12.
Int J Mol Sci ; 23(22)2022 Nov 10.
Article En | MEDLINE | ID: mdl-36430321

Methylmercury (MeHg) is highly toxic to the human brain. Although much is known about MeHg neurotoxic effects, less is known about how chronic MeHg affects hippocampal amino acids and other neurochemical markers in adult mice. In this study, we evaluated the MeHg effects on systemic lipids and inflammation, hippocampal oxidative stress, amino acid levels, neuroinflammation, and behavior in adult male mice. Challenged mice received MeHg in drinking water (2 mg/L) for 30 days. We assessed weight gain, total plasma cholesterol (TC), triglycerides (TG), endotoxin, and TNF levels. Hippocampal myeloperoxidase (MPO), malondialdehyde (MDA), acetylcholinesterase (AChE), amino acid levels, and cytokine transcripts were evaluated. Mice underwent open field, object recognition, Y, and Barnes maze tests. MeHg-intoxicated mice had higher weight gain and increased the TG and TC plasma levels. Elevated circulating TNF and LPS confirmed systemic inflammation. Higher levels of MPO and MDA and a reduction in IL-4 transcripts were found in the hippocampus. MeHg-intoxication led to increased GABA and glycine, reduced hippocampal taurine levels, delayed acquisition in the Barnes maze, and poor locomotor activity. No significant changes were found in AChE activity and object recognition. Altogether, our findings highlight chronic MeHg-induced effects that may have long-term mental health consequences in prolonged exposed human populations.


Methylmercury Compounds , Animals , Humans , Male , Mice , Acetylcholinesterase/metabolism , Amino Acids , Hippocampus/metabolism , Inflammation/chemically induced , Methylmercury Compounds/toxicity , Methylmercury Compounds/metabolism , Weight Gain , Mice, Inbred C57BL
13.
Adv Exp Med Biol ; 1400: 105-119, 2022.
Article En | MEDLINE | ID: mdl-35930229

ABSVTRACT: Schizophrenia, as any other psychiatric disorder, is a multifactorial and complex illness whose etiology is not completely established. Therefore, studies involving strategies that are able to describe the molecular alterations caused by the disease and, consequently, indicate the altered metabolic pathways are of increasing interest. Metabolomics is a very suitable approach that can be applied for this task, since it consists of the evaluation of the set of metabolites contained in a biological system undergoing a biological process, such as a disease or treatment. In metabolomics, state-of-the-art analytical techniques (mass spectrometry and nuclear magnetic resonance) are employed to identify and quantify the metabolites present in the studied biological samples, and chemometric and bioinformatic tools are applied to determine the specific metabolites and metabolic pathways that are relevant to the biological process under investigation. The aim of this chapter is to describe the basic principles of metabolomics, how this strategy can improve the understanding of the schizophrenia biology, and the findings obtained so far.


Schizophrenia , Humans , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Metabolic Networks and Pathways , Metabolomics/methods
14.
Metabolomics ; 18(8): 65, 2022 08 03.
Article En | MEDLINE | ID: mdl-35922643

INTRODUCTION: Bipolar disorder (BD) is a mood disorder characterized by the occurrence of depressive episodes alternating with episodes of elevated mood (known as mania). There is also an increased risk of other medical comorbidities. OBJECTIVES: This work uses a systems biology approach to compare BD treated patients with healthy controls (HCs), integrating proteomics and metabolomics data using partial correlation analysis in order to observe the interactions between altered proteins and metabolites, as well as proposing a potential metabolic signature panel for the disease. METHODS: Data integration between proteomics and metabolomics was performed using GC-MS data and label-free proteomics from the same individuals (N = 13; 5 BD, 8 HC) using generalized canonical correlation analysis and partial correlation analysis, and then building a correlation network between metabolites and proteins. Ridge-logistic regression models were developed to stratify between BD and HC groups using an extended metabolomics dataset (N = 28; 14 BD, 14 HC), applying a recursive feature elimination for the optimal selection of the metabolites. RESULTS: Network analysis demonstrated links between proteins and metabolites, pointing to possible alterations in hemostasis of BD patients. Ridge-logistic regression model indicated a molecular signature comprising 9 metabolites, with an area under the receiver operating characteristic curve (AUROC) of 0.833 (95% CI 0.817-0.914). CONCLUSION: From our results, we conclude that several metabolic processes are related to BD, which can be considered as a multi-system disorder. We also demonstrate the feasibility of partial correlation analysis for integration of proteomics and metabolomics data in a case-control study setting.


Bipolar Disorder , Metabolomics , Case-Control Studies , Hemostasis , Humans , Metabolomics/methods , Proteomics
15.
Front Chem ; 10: 836478, 2022.
Article En | MEDLINE | ID: mdl-35464220

Cardiovascular diseases (CVDs) are noncommunicable diseases known for their complex etiology and high mortality rate. Oxidative stress (OS), a condition in which the release of free radical exceeds endogenous antioxidant capacity, is pivotal in CVC, such as myocardial infarction, ischemia/reperfusion, and heart failure. Due to the lack of information about the implications of OS on cardiovascular conditions, several methodologies have been applied to investigate the causes and consequences, and to find new ways of diagnosis and treatment as well. In the present study, cardiac dysfunction was evaluated by analyzing cells' alterations with untargeted metabolomics, after simulation of an oxidative stress condition using hydrogen peroxide (H2O2) in H9c2 myocytes. Optimizations of H2O2 concentration, cell exposure, and cell recovery times were performed through MTT assays. Intracellular metabolites were analyzed right after the oxidative stress (oxidative stress group) and after 48 h of cell recovery (recovery group) by ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS) in positive and negative ESI ionization mode. Significant alterations were found in pathways such as "alanine, aspartate and glutamate metabolism", "glycolysis", and "glutathione metabolism", mostly with increased metabolites (upregulated). Furthermore, our results indicated that the LC-MS method is effective for studying metabolism in cardiomyocytes and generated excellent fit (R2Y > 0.987) and predictability (Q2 > 0.84) values.

16.
Behav Brain Res ; 427: 113878, 2022 06 03.
Article En | MEDLINE | ID: mdl-35378111

Considering the long-lasting effects of ayahuasca on the brain and emotional processing, the objective of this study was to evaluate the behavioural and neurobiological effects of repeated ayahuasca administration in an animal model of exploratory behaviour related to novel-environment anxiety. Male Wistar rats received water, 120, 240, 480 or 3600 mg/kg of resuspended freeze-dried ayahuasca by gavage once a day for 30 days; there was also a non-manipulated homecage group. One hour after the last administration, animals were placed individually in the open field for 20 min. We analysed the weight gain, the behavioural response through a stochastic analysis, and c-Fos immunoreactive levels in the hippocampus, amygdala, pre-frontal and barrel field cortex. Ayahuasca at 120 mg/kg increased ambulation, and at 3600 mg/kg decreased vertical exploration and reduced weight gain. Aya3600 had higher c-Fos expression in regions of the hippocampus and infralimbic cortex than homecage, water or aya120 groups. Water-receiving animals had less c-Fos expression in the anterior basolateral amygdala than others groups. Our results show different behavioural effects of ayahuasca: a stimulant-like effect in small doses, and decreased activity in extreme high-dose, probably due to adverse effects. Higher activation of areas involved in emotional processing and the serotonergic pathway adds to the neurobiological literature on repeated/chronic ingestion of ayahuasca. Our data do not support an anxiolytic effect of repeated ayahuasca related to exploring new anxiogenic-environment but suggest that low ayahuasca doses should be further studied. The absence of severe impairment and behavioural syntax alteration reinforce ayahuasca safety.


Banisteriopsis , Animals , Banisteriopsis/metabolism , Male , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar , Water , Weight Gain
17.
Food Res Int ; 155: 111107, 2022 05.
Article En | MEDLINE | ID: mdl-35400399

In the present study, foodomics approach was employed to investigate changes in the metabolism from the volatile terpenoids profile of mint(Mentha × gracillis Sole)from conventional, organic and permaculture (a type of agroecological agriculture system) farms using headspace solid-phase microextraction (HS-SPME) associated to gas chromatography coupled to mass spectrometry (GC-MS) and chemometric tools. The discrimination among the three types of mint was successfully achieved and demonstrated evidence of ecological interaction impact in the food metabolism. The agroecological mint presented as differential compounds: α-terpineol, bornyl formate, cis-carvyl propionate, cis-carveol, camphor, dihydrocarvyl acetate, dihydrocarveol, karahanaenone, nonanal, 3-octyl acetate, and trans-3-hexenyl-2 methylbutyrate. While organic and conventional mint presented as differential compounds: α-cedrene, ß -pinene, γ-muurolene, δ-cadinene, germacrene, terpinolene, and elemol. The majority of differential metabolites from agroecological mint are oxygenated monoterpenes, which have more intense flavor and biological activities than hydrocarbons monoterpenes and sesquiterpenes found in organic and conventional mint. Furthermore, the discrimination between organic and conventional mint was effectively performed, which demonstrated different terpenoid profiles though without implying benefits for one or another agriculture system.


Mentha , Volatile Organic Compounds , Agriculture , Gas Chromatography-Mass Spectrometry/methods , Monoterpenes/analysis , Solid Phase Microextraction/methods , Terpenes/analysis , Volatile Organic Compounds/analysis
18.
Ann Neurol ; 91(5): 652-669, 2022 05.
Article En | MEDLINE | ID: mdl-35226368

OBJECTIVE: Astrocytes play a significant role in the pathology of multiple sclerosis (MS). Nevertheless, for ethical reasons, most studies in these cells were performed using the Experimental Autoimmune Encephalomyelitis model. As there are significant differences between human and mouse cells, we aimed here to better characterize astrocytes from patients with MS (PwMS), focusing mainly on mitochondrial function and cell metabolism. METHODS: We obtained and characterized induced pluripotent stem cell (iPSC)-derived astrocytes from three PwMS and three unaffected controls, and performed electron microscopy, flow cytometry, cytokine and glutamate measurements, gene expression, in situ respiration, and metabolomics. We validated our findings using a single-nuclei RNA sequencing dataset. RESULTS: We detected several differences in MS astrocytes including: (i) enrichment of genes associated with neurodegeneration, (ii) increased mitochondrial fission, (iii) increased production of superoxide and MS-related proinflammatory chemokines, (iv) impaired uptake and enhanced release of glutamate, (v) increased electron transport capacity and proton leak, in line with the increased oxidative stress, and (vi) a distinct metabolic profile, with a deficiency in amino acid catabolism and increased sphingolipid metabolism, which have already been linked to MS. INTERPRETATION: Here we describe the metabolic profile of iPSC-derived astrocytes from PwMS and validate this model as a very powerful tool to study disease mechanisms and to perform non-invasive drug targeting assays in vitro. Our findings recapitulate several disease features described in patients and provide new mechanistic insights into the metabolic rewiring of astrocytes in MS, which could be targeted in future therapeutic studies. ANN NEUROL 2022;91:652-669.


Induced Pluripotent Stem Cells , Multiple Sclerosis , Animals , Astrocytes/metabolism , Glutamic Acid/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Mitochondria/metabolism , Multiple Sclerosis/pathology
19.
Anal Chim Acta ; 1195: 339385, 2022 Feb 22.
Article En | MEDLINE | ID: mdl-35090661

Mass spectrometry (MS) has found numerous applications in medicine and has been widely used in the detection and characterization of biomolecules associated with viral infections such as COVID-19. COVID-19 is a multisystem disease and, therefore, the need arises to carry out a careful and conclusive assessment of the pathophysiological parameters involved in the infection, to develop an effective therapeutic approach, assess the prognosis of the disease, and especially the early diagnosis of the infected population. Thus, the urgent need for highly accurate methods of diagnosis and prognosis of this infection presents new challenges for the development of laboratory medicine, whose methods require sensitivity, speed, and accuracy of the techniques for analyzing the biological markers involved in the infection. In this context, MS stands out as a robust analytical tool, with high sensitivity and selectivity, accuracy, low turnaround time, and versatility for the analysis of biological samples. However, it has not yet been adopted as a frontline clinical laboratory technique. Therefore, this review explores the potential and trends of current MS methods and their contribution to the development of new strategies to COVID-19 diagnosis and prognosis and how this tool can assist in the discovery of new therapeutic targets, in addition, to comment what could be the future of MS in medicine.


COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Laboratories, Clinical , Mass Spectrometry , Prognosis
20.
J Psychoactive Drugs ; 54(3): 278-283, 2022.
Article En | MEDLINE | ID: mdl-34530685

Ayahuasca is a psychoactive brew from the decoction of different Amazonian plants, traditionally used in several cultures, religions, and rituals. Scientific studies with ayahuasca are rapidly increasing due to its subjective effects and therapeutic potential. Although ayahuasca is traditionally used in its liquid presentation, lyophilized (freeze-dried) ayahuasca is often used in scientific experimentation settings. However, there is no standard process or guideline to freeze-dry ayahuasca nor comparison of the chemical profile between the liquid and freeze-dried presentations. Therefore, we describe a reproducible five-day protocol for ayahuasca lyophilization with alkaloids quantification by liquid chromatography coupled to tandem mass spectrometry of both the liquid and the final freeze-dried ayahuasca. By the end of the protocol, approximately 295 g of freeze-dried extract with similar alkaloids concentration were obtained from two liters of ayahuasca (dry matter: 14.75 %). The final extract was stored for three years inside a vacuum desiccator (approximately 6°C) with its texture quality preserved. Further studies should address the impact of different storage conditions and the lyophilization on the alkaloids' quantity of the freeze-dried ayahuasca, especially the use of heat in regards to the ß-carbolines.


Alkaloids , Banisteriopsis , Banisteriopsis/chemistry , Carbolines/analysis , Freeze Drying , Humans , Plant Extracts/pharmacology
...