Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
2.
BMC Infect Dis ; 24(1): 1028, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327613

RESUMEN

BACKGROUND: The World Health Organization 2022 malaria chemoprevention guidelines recommend providing a full course of antimalarial treatment at pre-defined intervals, regardless of malaria status to prevent illness among children resident in moderate to high perennial malaria transmission settings as perennial malaria chemoprevention (PMC) with sulfadoxine-pyrimethamine (SP). The dhps I431V mutation circulating in West Africa has unknown effect on SP protective efficacy. METHODS: This protocol is for a three-arm, parallel, double-blinded, placebo-controlled, randomised trial in Cameroon among children randomly assigned to one of three directly-observed treatment groups: (i) Group 1 (n = 450) receives daily artesunate (AS) placebo on days - 7 to -1, then active SP plus placebo amodiaquine (AQ) on day 0, and placebo AQ on days 1 and 2; (ii) Group 2 (n = 250) receives placebo AS on days - 7 to -1, then active SP and AQ on day 0, and active AQ on days 1 and 2; and (iii) Group 3 (n = 200) receives active AS on days - 7 to -1, then placebo SP on day 0 and placebo AQ on days 0 to 2. On days 0, 2, 5, 7, and thereafter weekly until day 28, children provide blood for thick smear slides. Dried blood spots are collected on the same days and weekly from day 28 to day 63 for quantitative polymerase chain reaction (qPCR) and genotype analyses. DISCUSSION: Our aim is to quantify the chemopreventive efficacy of SP, and SP plus AQ, and measure the effect of the parasite genotypes associated with SP resistance on parasite clearance and protection from infection when exposed to SP chemoprevention. We will report unblinded results including: (i) time-to-parasite clearance among SP and SP plus AQ recipients who were positive on day 0 by qPCR and followed to day 63; (ii) mean duration of SP and SP plus AQ protection against infection, and (iii) mean duration of symptom-free status among SP and SP plus AQ recipients who were parasite free on day 0 by qPCR. Our study is designed to compare the 28-day follow-up of the new WHO malaria chemoprevention efficacy study protocol with extended follow-up to day 63. TRIAL REGISTRATION: ClinicalTrials.gov NCT06173206; 15/12/2023.


Asunto(s)
Amodiaquina , Antimaláricos , Artesunato , Combinación de Medicamentos , Malaria Falciparum , Plasmodium falciparum , Pirimetamina , Sulfadoxina , Humanos , Pirimetamina/uso terapéutico , Pirimetamina/administración & dosificación , Camerún , Sulfadoxina/uso terapéutico , Sulfadoxina/administración & dosificación , Malaria Falciparum/prevención & control , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Antimaláricos/uso terapéutico , Antimaláricos/administración & dosificación , Preescolar , Amodiaquina/uso terapéutico , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Método Doble Ciego , Femenino , Masculino , Artesunato/uso terapéutico , Artemisininas/uso terapéutico , Artemisininas/administración & dosificación , Resultado del Tratamiento , Quimioprevención/métodos
3.
bioRxiv ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39345628

RESUMEN

Plasmodium ovale curtisi ( Poc) and Plasmodium ovale wallikeri ( Pow ) are relapsing malaria parasites endemic to Africa and Asia that were previously thought to represent a single species. Amid increasing detection of ovale malaria in sub-Saharan Africa, we performed a population genomic study of both species across the continent. We conducted whole-genome sequencing of 25 isolates from Central and East Africa and analyzed them alongside 20 previously published African genomes. Isolates were predominantly monoclonal (43/45), with their genetic similarity aligning with geography. Pow showed lower average nucleotide diversity (1.8×10 -4 ) across the genome compared to Poc (3.0×10 -4 ) (p < 0.0001). Signatures of selective sweeps involving the dihydrofolate reductase gene were found in both species, as were signs of balancing selection at the merozoite surface protein 1 gene. Differences in the nucleotide diversity of Poc and Pow may reflect unique demographic history, even as similar selective forces facilitate their resilience to malaria control interventions.

4.
J Med Chem ; 67(16): 14493-14523, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39134060

RESUMEN

To contribute to the global effort to develop new antimalarial therapies, we previously disclosed initial findings on the optimization of the dihydroquinazolinone-3-carboxamide class that targets PfATP4. Here we report on refining the aqueous solubility and metabolic stability to improve the pharmacokinetic profile and consequently in vivo efficacy. We show that the incorporation of heterocycle systems in the 8-position of the scaffold was found to provide the greatest attainable balance between parasite activity, aqueous solubility, and metabolic stability. Optimized analogs, including the frontrunner compound S-WJM992, were shown to inhibit PfATP4-associated Na+-ATPase activity, gave rise to a metabolic signature consistent with PfATP4 inhibition, and displayed altered activities against parasites with mutations in PfATP4. Finally, S-WJM992 showed appreciable efficacy in a malaria mouse model and blocked gamete development preventing transmission to mosquitoes. Importantly, further optimization of the dihydroquinazolinone class is required to deliver a candidate with improved pharmacokinetic and risk of resistance profiles.


Asunto(s)
Antimaláricos , Plasmodium falciparum , Quinazolinonas , Antimaláricos/farmacología , Antimaláricos/química , Antimaláricos/farmacocinética , Animales , Plasmodium falciparum/efectos de los fármacos , Quinazolinonas/farmacología , Quinazolinonas/química , Quinazolinonas/farmacocinética , Ratones , Administración Oral , Relación Estructura-Actividad , Humanos , Malaria/tratamiento farmacológico , Femenino , Solubilidad
5.
Sci Rep ; 14(1): 20165, 2024 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215071

RESUMEN

Robust diagnostic tools and surveillance are crucial for malaria control and elimination efforts. Malaria caused by neglected Plasmodium parasites is often underestimated due to the lack of rapid diagnostic tools that can accurately detect these species. While nucleic-acid amplification technologies stand out as the most sensitive methods for detecting and confirming Plasmodium species, their implementation in resource-constrained settings poses significant challenges. Here, we present a Pan Plasmodium recombinase polymerase amplification lateral flow (RPA-LF) assay, capable of detecting all six human infecting Plasmodium species in low resource settings. The Pan Plasmodium RPA-LF assay successfully detected low density clinical infections with a preliminary limit of detection between 10-100 fg/µl for P. falciparum. When combined with crude nucleic acid extraction, the assay can serve as a point-of-need tool for molecular xenomonitoring. This utility was demonstrated by screening laboratory-reared Anopheles stephensi mosquitoes fed with Plasmodium-infected blood, as well as field samples of An. funestus s.l. and An. gambiae s.l. collected from central Africa. Overall, our proof-of-concept Pan Plasmodium diagnostic tool has the potential to be applied for clinical and xenomonitoring field surveillance, and after further evaluation, could become an essential tool to assist malaria control and elimination.


Asunto(s)
Anopheles , Malaria , Mosquitos Vectores , Técnicas de Amplificación de Ácido Nucleico , Plasmodium , Humanos , Animales , Anopheles/parasitología , Plasmodium/genética , Plasmodium/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Malaria/diagnóstico , Malaria/parasitología , Mosquitos Vectores/parasitología , Recombinasas/metabolismo , Recombinasas/genética , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación
6.
Nat Commun ; 15(1): 5219, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890312

RESUMEN

With resistance to most antimalarials increasing, it is imperative that new drugs are developed. We previously identified an aryl acetamide compound, MMV006833 (M-833), that inhibited the ring-stage development of newly invaded merozoites. Here, we select parasites resistant to M-833 and identify mutations in the START lipid transfer protein (PF3D7_0104200, PfSTART1). Introducing PfSTART1 mutations into wildtype parasites reproduces resistance to M-833 as well as to more potent analogues. PfSTART1 binding to the analogues is validated using organic solvent-based Proteome Integral Solubility Alteration (Solvent PISA) assays. Imaging of invading merozoites shows the inhibitors prevent the development of ring-stage parasites potentially by inhibiting the expansion of the encasing parasitophorous vacuole membrane. The PfSTART1-targeting compounds also block transmission to mosquitoes and with multiple stages of the parasite's lifecycle being affected, PfSTART1 represents a drug target with a new mechanism of action.


Asunto(s)
Acetamidas , Antimaláricos , Plasmodium falciparum , Proteínas Protozoarias , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/crecimiento & desarrollo , Acetamidas/farmacología , Acetamidas/química , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Antimaláricos/farmacología , Antimaláricos/química , Animales , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Mutación , Malaria Falciparum/parasitología , Malaria Falciparum/prevención & control , Malaria Falciparum/tratamiento farmacológico , Humanos , Resistencia a Medicamentos/genética , Resistencia a Medicamentos/efectos de los fármacos , Estadios del Ciclo de Vida/efectos de los fármacos
7.
PLoS Med ; 21(5): e1004376, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38723040

RESUMEN

BACKGROUND: Recently revised WHO guidelines on malaria chemoprevention have opened the door to more tailored implementation. Countries face choices on whether to replace old drugs, target additional age groups, and adapt delivery schedules according to local drug resistance levels and malaria transmission patterns. Regular routine assessment of protective efficacy of chemoprevention is key. Here, we apply a novel modelling approach to aid the design and analysis of chemoprevention trials and generate measures of protection that can be applied across a range of transmission settings. METHODS AND FINDINGS: We developed a model of genotype-specific drug protection, which accounts for underlying risk of infection and circulating genotypes. Using a Bayesian framework, we fitted the model to multiple simulated scenarios to explore variations in study design, setting, and participant characteristics. We find that a placebo or control group with no drug protection is valuable but not always feasible. An alternative approach is a single-arm trial with an extended follow-up (>42 days), which allows measurement of the underlying infection risk after drug protection wanes, as long as transmission is relatively constant. We show that the currently recommended 28-day follow-up in a single-arm trial results in low precision of estimated 30-day chemoprevention efficacy and low power in determining genotype differences of 12 days in the duration of protection (power = 1.4%). Extending follow-up to 42 days increased precision and power (71.5%) in settings with constant transmission over this time period. However, in settings of unstable transmission, protective efficacy in a single-arm trial was overestimated by 24.3% if recruitment occurred during increasing transmission and underestimated by 15.8% when recruitment occurred during declining transmission. Protective efficacy was estimated with greater precision in high transmission settings, and power to detect differences by resistance genotype was lower in scenarios where the resistant genotype was either rare or too common. CONCLUSIONS: These findings have important implications for the current guidelines on chemoprevention efficacy studies and will be valuable for informing where these studies should be optimally placed. The results underscore the need for a comparator group in seasonal settings and provide evidence that the extension of follow-up in single-arm trials improves the accuracy of measures of protective efficacy in settings with more stable transmission. Extension of follow-up may pose logistical challenges to trial feasibility and associated costs. However, these studies may not need to be repeated multiple times, as the estimates of drug protection against different genotypes can be applied to different settings by adjusting for transmission intensity and frequency of resistance.


Asunto(s)
Antimaláricos , Quimioprevención , Resistencia a Medicamentos , Malaria , Humanos , Antimaláricos/uso terapéutico , Resistencia a Medicamentos/genética , Malaria/prevención & control , Malaria/transmisión , Malaria/epidemiología , Quimioprevención/métodos , Teorema de Bayes , Genotipo , Proyectos de Investigación
9.
medRxiv ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38633782

RESUMEN

Background: Zoonotic P. knowlesi and P. cynomolgi symptomatic and asymptomatic infections occur across endemic areas of Southeast Asia. Most infections are low-parasitemia, with an unknown proportion below routine microscopy detection thresholds. Molecular surveillance tools optimizing the limit of detection (LOD) would allow more accurate estimates of zoonotic malaria prevalence. Methods: An established ultra-sensitive Plasmodium genus quantitative-PCR (qPCR) assay targeting the 18S rRNA gene underwent LOD evaluation with and without reverse transcription (RT) for P. knowlesi, P. cynomolgi and P. vivax using total nucleic acid preserved (DNA/RNA Shield™) isolates and archived dried blood spots (DBS). LODs for selected P. knowlesi-specific assays, and reference P. vivax- and P. cynomolgi-specific assays were determined with RT. Assay specificities were assessed using clinical malaria samples and malaria-negative controls. Results: The use of reverse transcription improved Plasmodium species detection by up to 10,000-fold (Plasmodium genus), 2759-fold (P. knowlesi), 1000-fold (P. vivax) and 10-fold (P. cynomolgi). The median LOD with RT for the Kamau et al. Plasmodium genus RT-qPCR assay was ≤0.0002 parasites/µL for P. knowlesi and 0.002 parasites/µL for both P. cynomolgi and P. vivax. The LODs with RT for P. knowlesi-specific PCRs were: Imwong et al. 18S rRNA (0.0007 parasites/µL); Divis et al. real-time 18S rRNA (0.0002 parasites/µL); Lubis et al. hemi-nested SICAvar (1.1 parasites/µL) and Lee et al. nested 18S rRNA (11 parasites/µL). The LOD for P. vivax- and P. cynomolgi-specific assays with RT were 0.02 and 0.20 parasites/µL respectively. For DBS P. knowlesi samples the median LOD for the Plasmodium genus qPCR with RT was 0.08, and without RT was 19.89 parasites/uL (249-fold change); no LOD improvement was demonstrated in DBS archived beyond 6 years. The Plasmodium genus and P. knowlesi-assays were 100% specific for Plasmodium species and P. knowlesi detection, respectively, from 190 clinical infections and 48 healthy controls. Reference P. vivax-specific primers demonstrated known cross-reactivity with P. cynomolgi. Conclusion: Our findings support the use of an 18S rRNA Plasmodium genus qPCR and species-specific nested PCR protocol with RT for highly-sensitive surveillance of zoonotic and human Plasmodium species infections.

10.
Sci Rep ; 14(1): 3843, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360879

RESUMEN

Despite Plasmodium ovale curtisi (Poc) and wallikeri (Pow) being important human-infecting malaria parasites that are widespread across Africa and Asia, little is known about their genome diversity. Morphologically identical, Poc and Pow are indistinguishable and commonly misidentified. Recent rises in the incidence of Poc/Pow infections have renewed efforts to address fundamental knowledge gaps in their biology, and to develop diagnostic tools to understand their epidemiological dynamics and malaria burden. A major roadblock has been the incompleteness of available reference assemblies (PocGH01, PowCR01; ~ 33.5 Mbp). Here, we applied multiple sequencing platforms and advanced bioinformatics tools to generate new reference genomes, Poc221 (South Sudan; 36.0 Mbp) and Pow222 (Nigeria; 34.3 Mbp), with improved nuclear genome contiguity (> 4.2 Mbp), annotation and completeness (> 99% Plasmodium spp., single copy orthologs). Subsequent sequencing of 6 Poc and 15 Pow isolates from Africa revealed a total of 22,517 and 43,855 high-quality core genome SNPs, respectively. Genome-wide levels of nucleotide diversity were determined to be 2.98 × 10-4 (Poc) and 3.43 × 10-4 (Pow), comparable to estimates for other Plasmodium species. Overall, the new reference genomes provide a robust foundation for dissecting the biology of Poc/Pow, their population structure and evolution, and will contribute to uncovering the recombination barrier separating these species.


Asunto(s)
Malaria , Parásitos , Plasmodium ovale , Animales , Humanos , Parásitos/genética , Análisis de Secuencia de ADN , Malaria/parasitología , Nigeria
11.
Clin Infect Dis ; 78(2): 445-452, 2024 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-38019958

RESUMEN

BACKGROUND: Recent cases of clinical failure in malaria patients in the United Kingdom (UK) treated with artemether-lumefantrine have implications for malaria chemotherapy worldwide. METHODS: Parasites were isolated from an index case of confirmed Plasmodium falciparum treatment failure after standard treatment, and from comparable travel-acquired UK malaria cases. Drug susceptibility in vitro and genotypes at 6 resistance-associated loci were determined for all parasite isolates and compared with clinical outcomes for each parasite donor. RESULTS: A traveler, who returned to the UK from Uganda in 2022 with Plasmodium falciparum malaria, twice failed treatment with full courses of artemether-lumefantrine. Parasites from the patient exhibited significantly reduced susceptibility to artemisinin (ring-stage survival, 17.3% [95% confidence interval {CI}, 13.6%-21.1%]; P < .0001) and lumefantrine (effective concentration preventing 50% of growth = 259.4 nM [95% CI, 130.6-388.2 nM]; P = .001). Parasite genotyping identified an allele of pfk13 encoding both the A675V variant in the Pfk13 propeller domain and a novel L145V nonpropeller variant. In vitro susceptibility testing of 6 other P. falciparum lines of Ugandan origin identified reduced susceptibility to artemisinin and lumefantrine in 1 additional line, also from a 2022 treatment failure case. These parasites did not harbor a pfk13 propeller domain variant but rather the novel nonpropeller variant T349I. Variant alleles of pfubp1, pfap2mu, and pfcoronin were also identified among the 7 parasite lines. CONCLUSIONS: We confirm, in a documented case of artemether-lumefantrine treatment failure imported from Uganda, the presence of pfk13 mutations encoding L145V and A675V. Parasites with reduced susceptibility to both artemisinin and lumefantrine may be emerging in Uganda.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria , Humanos , Lumefantrina/farmacología , Lumefantrina/uso terapéutico , Plasmodium falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/farmacología , Combinación Arteméter y Lumefantrina/uso terapéutico , Uganda , Resistencia a Medicamentos , Arteméter/farmacología , Arteméter/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Insuficiencia del Tratamiento , Reino Unido , Proteínas Protozoarias/genética
13.
Genome Med ; 15(1): 96, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950308

RESUMEN

BACKGROUND: Malaria continues to be a major threat to global public health. Whole genome sequencing (WGS) of the underlying Plasmodium parasites has provided insights into the genomic epidemiology of malaria. Genome sequencing is rapidly gaining traction as a diagnostic and surveillance tool for clinical settings, where the profiling of co-infections, identification of imported malaria parasites, and detection of drug resistance are crucial for infection control and disease elimination. To support this informatically, we have developed the Malaria-Profiler tool, which rapidly (within minutes) predicts Plasmodium species, geographical source, and resistance to antimalarial drugs directly from WGS data. RESULTS: The online and command line versions of Malaria-Profiler detect ~ 250 markers from genome sequences covering Plasmodium speciation, likely geographical source, and resistance to chloroquine, sulfadoxine-pyrimethamine (SP), and other anti-malarial drugs for P. falciparum, but also providing mutations for orthologous resistance genes in other species. The predictive performance of the mutation library was assessed using 9321 clinical isolates with WGS and geographical data, with most being single-species infections (P. falciparum 7152/7462, P. vivax 1502/1661, P. knowlesi 143/151, P. malariae 18/18, P. ovale ssp. 5/5), but co-infections were identified (456/9321; 4.8%). The accuracy of the predicted geographical profiles was high to both continental (96.1%) and regional levels (94.6%). For P. falciparum, markers were identified for resistance to chloroquine (49.2%; regional range: 24.5% to 100%), sulfadoxine (83.3%; 35.4- 90.5%), pyrimethamine (85.4%; 80.0-100%) and combined SP (77.4%). Markers associated with the partial resistance of artemisinin were found in WGS from isolates sourced from Southeast Asia (30.6%). CONCLUSIONS: Malaria-Profiler is a user-friendly tool that can rapidly and accurately predict the geographical regional source and anti-malarial drug resistance profiles across large numbers of samples with WGS data. The software is flexible with modifiable bioinformatic pipelines. For example, it is possible to select the sequencing platform, display specific variants, and customise the format of outputs. With the increasing application of next-generation sequencing platforms on Plasmodium DNA, Malaria-Profiler has the potential to be integrated into point-of-care and surveillance settings, thereby assisting malaria control. Malaria-Profiler is available online (bioinformatics.lshtm.ac.uk/malaria-profiler) and as standalone software ( https://github.com/jodyphelan/malaria-profiler ).


Asunto(s)
Antimaláricos , Coinfección , Malaria Falciparum , Malaria Vivax , Malaria , Parásitos , Plasmodium , Humanos , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Coinfección/tratamiento farmacológico , Malaria/tratamiento farmacológico , Malaria/parasitología , Plasmodium/genética , Malaria Falciparum/tratamiento farmacológico , Cloroquina/uso terapéutico , Resistencia a Medicamentos/genética , Plasmodium falciparum/genética
14.
Microbiol Spectr ; : e0382022, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37698406

RESUMEN

Our overall understanding of the developmental biology of malaria parasites has been greatly enhanced by recent advances in transcriptomic analysis. However, most of these investigations rely on laboratory strains (LS) that were adapted into in vitro culture many years ago, and the transcriptomes of clinical isolates (CI) circulating in human populations have not been assessed. In this study, RNA-seq was used to compare the global transcriptome of mid-stage gametocytes derived from three short-term cultured CI, with gametocytes derived from the NF54 reference laboratory strain. The core transcriptome appeared to be consistent between CI- and LS-derived gametocyte preparations, but some important differences were also observed. A majority of gametocyte-specific genes (43/53) appear to have relatively higher expression in CI-derived gametocytes than in LS-derived gametocytes, but a K-means clustering analysis showed that genes involved in flagellum- and microtubule-based processes (movement/motility) were more abundant in both groups, albeit with some differences between them. In addition, gametocytes from one CI described as CI group II gametocytes (CI:GGII) showed gene expression variation in the form of reduced gametocyte-specific gene expression compared to the other two CI-derived gametocytes (CI gametocyte group I, CI:GGI), although the mixed developmental stages used in our study is a potential confounder, only partially mitigated by the inclusion of multiple replicates for each CI. Overall, our study suggests that there may be subtle differences in the gene expression profiles of mid-stage gametocytes from CI relative to the NF54 reference strain of Plasmodium falciparum. Thus, it is necessary to deploy gametocyte-producing clinical parasite isolates to fully understand the diversity of gene expression strategies that may occur during the sequestered development of parasite sexual stages. IMPORTANCE Maturing gametocytes of Plasmodium falciparum are known to sequester away from peripheral circulation into the bone marrow until they are mature. Blocking gametocyte sequestration can prevent malaria transmission from humans to mosquitoes, but most studies aim to understand gametocyte development utilizing long-term adapted laboratory lines instead of clinical isolates. This is a particular issue for our understanding of the sexual stages, which are known to decrease rapidly during adaptation to long-term culture, meaning that many LS are unable to produce transmissible gametocytes. Using RNA-seq, we investigated the global transcriptome of mid-stage gametocytes derived from three clinical isolates and a reference strain (NF54). This identified important differences in gene expression profiles between immature gametocytes of CI and the NF54 reference strain of P. falciparum, suggesting increased investment in gametocytogenesis in clinical isolates. Our transcriptomic data highlight the use of clinical isolates in studying the morphological, cellular features and molecular biology of gametocytes.

15.
Malar J ; 22(1): 271, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710288

RESUMEN

BACKGROUND: The routine surveillance of asymptomatic malaria using nucleic acid-based amplification tests is essential in obtaining reliable data that would inform malaria policy formulation and the implementation of appropriate control measures. METHODS: In this study, the prevalence rate and the dynamics of Plasmodium species among asymptomatic children (n = 1697) under 5 years from 30 communities within the Hohoe municipality in Ghana were determined. RESULTS AND DISCUSSION: The observed prevalence of Plasmodium parasite infection by polymerase chain reaction (PCR) was 33.6% (571/1697), which was significantly higher compared to that obtained by microscopy [26.6% (451/1697)] (P < 0.0001). Based on species-specific analysis by nested PCR, Plasmodium falciparum infection [33.6% (570/1697)] was dominant, with Plasmodium malariae, Plasmodium ovale and Plasmodium vivax infections accounting for 0.1% (1/1697), 0.0% (0/1697), and 0.0% (0/1697), respectively. The prevalence of P. falciparum infection among the 30 communities ranged from 0.0 to 82.5%. Following artesunate-amodiaquine (AS + AQ, 25 mg/kg) treatment of a sub-population of the participants (n = 184), there was a substantial reduction in Plasmodium parasite prevalence by 100% and 79.2% on day 7 based on microscopy and nested PCR analysis, respectively. However, there was an increase in parasite prevalence from day 14 to day 42, with a subsequent decline on day 70 by both microscopy and nested PCR. For parasite clearance rate analysis, we found a significant proportion of the participants harbouring residual Plasmodium parasites or parasite genomic DNA on day 1 [65.0% (13/20)], day 2 [65.0% (13/20)] and day 3 [60.0% (12/20)] after initiating treatment. Of note, gametocyte carriage among participants was low before and after treatment. CONCLUSION: Taken together, the results indicate that a significant number of individuals could harbour residual Plasmodium parasites or parasite genomic DNA after treatment. The study demonstrates the importance of routine surveillance of asymptomatic malaria using sensitive nucleic acid-based amplification techniques.


Asunto(s)
Artemisininas , Malaria Falciparum , Malaria , Ácidos Nucleicos , Niño , Humanos , Ghana/epidemiología , Malaria/tratamiento farmacológico , Malaria/epidemiología , Artemisininas/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Plasmodium malariae
16.
Parasite Epidemiol Control ; 21: e00292, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36860282

RESUMEN

Background: Asymptomatic Plasmodium carriers form the majority of malaria-infected individuals in most endemic areas. A proportion of these asymptomatically infected individuals carry gametocytes, the transmissible stages of malaria parasites, that sustain human to mosquito transmission. Few studies examine gametocytaemia in asymptomatic school children who may form an important reservoir for transmission. We assessed the prevalence of gametocytaemia before antimalarial treatment and monitored clearance of gametocytes after treatment in asymptomatic malaria children. Methods: A total of 274 primary school children were screened for P. falciparum parasitaemia by microscopy. One hundred and fifty-five (155) parasite positive children were treated under direct observation with dihydroartemisinin-piperaquine (DP). Gametocyte carriage was determined by microscopy seven days prior to treatment, day 0 before treatment, and on days 7, 14 and 21 post initiation of treatment. Results: The prevalence of microscopically-detectable gametocytes at screening (day -7) and enrolment (day 0) were 9% (25/274) and 13.6% (21/155) respectively. Following DP treatment, gametocyte carriage dropped to 4% (6/135), 3% (5/135) and 6% (10/151) on days 7, 14 and 21 respectively. Asexual parasites persisted in a minority of treated children, resulting in microscopically detectable parasites on days 7 (9%, 12/135), 14 (4%, 5/135) and 21 (7%, 10/151). Gametocyte carriage was inversely correlated with the age of the participants (p = 0.05) and asexual parasite density (p = 0.08). In a variate analysis, persistent gametocytaemia 7 or more days after treatment was significantly associated with post-treatment asexual parasitaemia at day 7 (P = 0.027) and presence of gametocytes on the day of treatment (P < 0.001). Conclusions: Though DP provides both excellent cure rates for clinical malaria and a long prophylactic half-life, our findings suggest that after treatment of asymptomatic infections, both asexual parasites and gametocytes may persist in a minority of individuals during the first 3 weeks after treatment. This indicates DP may be unsuitable for use in mass drug administration strategies towards malaria elimination in Africa.

17.
Am J Trop Med Hyg ; 108(4): 777-782, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36878214

RESUMEN

Atovaquone-proguanil is one of the most commonly prescribed malaria prophylactic drugs. However, sporadic mutations conferring resistance to atovaquone have been detected in recent years associated with single nucleotide polymorphisms (SNPs) in the Plasmodium falciparum cytochrome b ( pfcytb) gene. Monitoring polymorphisms linked with resistance is essential in assessing the prevalence of drug resistance and may help in designing strategies for malaria control. Several approaches have been used to study genetic polymorphisms associated with antimalarial drug resistance. However, they either lack high throughput capacity or are expensive in time or money. Ligase detection reaction fluorescent microsphere assay (LDR-FMA) provides a high-throughput method to detect genetic polymorphisms in P. falciparum. In this study, we have created primers to detect SNPs associated with clinically relevant atovaquone resistance using LDR-FMA and validated them in clinical samples. Four SNPs from pfcytb gene were analyzed using LDR-FMA. The results were 100% consistent with DNA sequence data, indicating that this method has potential as a tool to detect genetic polymorphisms associated with atovaquone resistance in P. falciparum.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Atovacuona/uso terapéutico , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple , Ligasas/genética , Proguanil/uso terapéutico , Antimaláricos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Combinación de Medicamentos , Cartilla de ADN , Resistencia a Medicamentos/genética , Citocromos b/genética
18.
Sci Rep ; 13(1): 2142, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750737

RESUMEN

The zoonotic Plasmodium knowlesi parasite is a growing public health concern in Southeast Asia, especially in Malaysia, where elimination of P. falciparum and P. vivax malaria has been the focus of control efforts. Understanding of the genetic diversity of P. knowlesi parasites can provide insights into its evolution, population structure, diagnostics, transmission dynamics, and the emergence of drug resistance. Previous work has revealed that P. knowlesi fall into three main sub-populations distinguished by a combination of geographical location and macaque host (Macaca fascicularis and M. nemestrina). It has been shown that Malaysian Borneo groups display profound heterogeneity with long regions of high or low divergence resulting in mosaic patterns between sub-populations, with some evidence of chromosomal-segment exchanges. However, the genetic structure of non-Borneo sub-populations is less clear. By gathering one of the largest collections of P. knowlesi whole-genome sequencing data, we studied structural genomic changes across sub-populations, with the analysis revealing differences in Borneo clusters linked to mosquito-related stages of the parasite cycle, in contrast to differences in host-related stages for the Peninsular group. Our work identifies new genetic exchange events, including introgressions between Malaysian Peninsular and M. nemestrina-associated clusters on various chromosomes, including in parasite invasion genes (DBP[Formula: see text], NBPX[Formula: see text] and NBPX[Formula: see text]), and important proteins expressed in the vertebrate parasite stages. Recombination events appear to have occurred between the Peninsular and M. fascicularis-associated groups, including in the DBP[Formula: see text] and DBP[Formula: see text] invasion associated genes. Overall, our work finds that genetic exchange events have occurred among the recognised contemporary groups of P. knowlesi parasites during their evolutionary history, leading to apparent mosaicism between these sub-populations. These findings generate new hypotheses relevant to parasite evolutionary biology and P. knowlesi epidemiology, which can inform malaria control approaches to containing the impact of zoonotic malaria on human communities.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Plasmodium knowlesi , Animales , Humanos , Variación Genética , Plasmodium knowlesi/genética , Macaca fascicularis/parasitología , Malaria/parasitología , Malasia/epidemiología , Genética de Población , Selección Genética
20.
Lancet Reg Health Am ; 18: 100420, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36844008

RESUMEN

Background: Brazil is a unique and understudied setting for malaria, with complex foci of transmission associated with human and environmental conditions. An understanding of the population genomic diversity of P. vivax parasites across Brazil can support malaria control strategies. Methods: Through whole genome sequencing of P. vivax isolates across 7 Brazilian states, we use population genomic approaches to compare genetic diversity within country (n = 123), continent (6 countries, n = 315) and globally (26 countries, n = 885). Findings: We confirm that South American isolates are distinct, have more ancestral populations than the other global regions, with differentiating mutations in genes under selective pressure linked to antimalarial drugs (pvmdr1, pvdhfr-ts) and mosquito vectors (pvcrmp3, pvP45/48, pvP47). We demonstrate Brazil as a distinct parasite population, with signals of selection including ABC transporter (PvABCI3) and PHIST exported proteins. Interpretation: Brazil has a complex population structure, with evidence of P. simium infections and Amazonian parasites separating into multiple clusters. Overall, our work provides the first Brazil-wide analysis of P. vivax population structure and identifies important mutations, which can inform future research and control measures. Funding: AI is funded by an MRC LiD PhD studentship. TGC is funded by the Medical Research Council (Grant no. MR/M01360X/1, MR/N010469/1, MR/R025576/1, MR/R020973/1 and MR/X005895/1). SC is funded by Medical Research Council UK grants (MR/M01360X/1, MR/R025576/1, MR/R020973/1 and MR/X005895/1) and Bloomsbury SET (ref. CCF17-7779). FN is funded by The Shloklo Malaria Research Unit - part of the Mahidol Oxford Research Unit, supported by the Wellcome Trust (Grant no. 220211). ARSB is funded by São Paulo Research Foundation - FAPESP (Grant no. 2002/09546-1). RLDM is funded by Brazilian National Council for Scientific and Technological Development - CNPq (Grant no. 302353/2003-8 and 471605/2011-5); CRFM is funded by FAPESP (Grant no. 2020/06747-4) and CNPq (Grant no. 302917/2019-5 and 408636/2018-1); JGD is funded by FAPESP fellowships (2016/13465-0 and 2019/12068-5) and CNPq (Grant no. 409216/2018-6).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA