Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 382(2273): 20230197, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38736334

RESUMEN

The origin of micrometeorites (MMs) from asteroids and comets is well-established, but the relative contribution from these two classes remains poorly resolved. Likewise, determining the precise origin of individual MMs is an open challenge. Here, cosmic-ray exposure ages are used to resolve the spatial origins of 12 MMs collected from urban areas and Antarctica. Their 26Al and 10Be concentration, produced during cosmic-ray irradiation in space, were measured by accelerator mass spectrometry. These data are compared to results from a model simulating the transport and irradiation of the MM precursors in space. This model, for the first time, considers a variety of orbits, precursor particle sizes, compositions and densities and incorporates non-isotropic solar and galactic cosmic-ray flux profiles, depth-dependent production rates, as well as spherical evaporation during atmospheric entry. While the origin for six MMs remains ambiguous, two MMs show a preferential tendency towards an origin in the Inner Solar System (Near Earth Objects to the Asteroid Belt) and four towards an origin in the Outer Solar System (Jupiter Family Comets to the Kuiper Belt). These findings challenge the notion that dust originating from the Outer Solar System is unlikely to survive long-term transport and delivery to the terrestrial planets. This article is part of the theme issue 'Dust in the Solar System and beyond'.

2.
Sci Rep ; 9(1): 12426, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31455844

RESUMEN

We report the discovery of a unique micrometeorite, containing an exotic Al-Cu-Fe alloy composed of two intermixed phases: khatyrkite (CuAl2) and stolperite (CuAl) and both containing minor Fe (<1.4 wt%). These phases are dendritic and rapidly co-crystallized at the binary system's peritectic (~550 °C). The host micrometeorite is an otherwise typical S-type micro-porphyritic cosmic spherule containing relict olivine (Fo76-90, Cr2O3: 0.01-0.56 wt%, MnO: 0.03-0.32 wt% and CaO: 0.09-0.22 wt%) and a cumulate layered texture. These properties suggest the micrometeorite is derived from a carbonaceous chondrite (best matched to a CO chondrite) and entered the atmosphere a high speed (~16 kms-1), implying an origin from a highly eccentric orbit. This particle represents the second independent discovery of naturally occurring intermetallic Al-Cu-Fe alloys and is thus similar to the previously reported Khatyrka meteorite - a CV chondrite containing near-identical alloys and the only known natural quasicrystals. We did not observe quasicrystalline phases in this micrometeorite, likely due to the low amounts of Fe in the alloy, insufficient to stabilize quasicrystals. Our discovery confirms the existence of Al-Cu-Fe intermetallic alloys on chondritic parent bodies. These unusual phases require a currently unexplained formation process, we tentatively suggest this could represent the delivery of exotic interstellar material to the inner solar system via impact.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...