Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 67
1.
Mol Cancer Res ; 22(1): 29-40, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-37801008

Achaete-scute family bHLH transcription factor 1 (ASCL1) is a master transcription factor involved in neuroendocrine differentiation. ASCL1 is expressed in approximately 10% of lung adenocarcinomas (LUAD) and exerts tumor-promoting effects. Here, we explored miRNA profiles in ASCL1-positive LUADs and identified several miRNAs closely associated with ASCL1 expression, including miR-375, miR-95-3p/miR-95-5p, miR-124-3p, and members of the miR-17∼92 family. Similar to small cell lung cancer, Yes1 associated transcriptional regulator (YAP1), a representative miR-375 target gene, was suppressed in ASCL1-positive LUADs. ASCL1 knockdown followed by miRNA profiling in a cell culture model further revealed that ASCL1 positively regulates miR-124-3p and members of the miR-17∼92 family. Integrative transcriptomic analyses identified ZFP36 ring finger protein like 1 (ZFP36L1) as a target gene of miR-124-3p, and IHC studies demonstrated that ASCL1-positive LUADs are associated with low ZFP36L1 protein levels. Cell culture studies showed that ectopic ZFP36L1 expression inhibits cell proliferation, survival, and cell-cycle progression. Moreover, ZFP36L1 negatively regulated several genes including E2F transcription factor 1 (E2F1) and snail family transcriptional repressor 1 (SNAI1). In conclusion, our study revealed that suppression of ZFP36L1 via ASCL1-regulated miR-124-3p could modulate gene expression, providing evidence that ASCL1-mediated regulation of miRNAs shapes molecular features of ASCL1-positive LUADs. IMPLICATIONS: Our study revealed unique miRNA profiles of ASCL1-positive LUADs and identified ASCL1-regulated miRNAs with functional relevance.


Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Small Cell Lung Carcinoma , Humans , Cell Line, Tumor , Adenocarcinoma of Lung/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Small Cell Lung Carcinoma/genetics , Cell Proliferation/genetics , Lung Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Butyrate Response Factor 1/genetics , Butyrate Response Factor 1/metabolism
2.
Nat Commun ; 14(1): 4521, 2023 08 22.
Article En | MEDLINE | ID: mdl-37607907

Oncogene-induced DNA replication stress (RS) and consequent pathogenic R-loop formation are known to impede S phase progression. Nonetheless, cancer cells continuously proliferate under such high-stressed conditions through incompletely understood mechanisms. Here, we report taurine upregulated gene 1 (TUG1) long noncoding RNA (lncRNA), which is highly expressed in many types of cancers, as an important regulator of intrinsic R-loop in cancer cells. Under RS conditions, TUG1 is rapidly upregulated via activation of the ATR-CHK1 signaling pathway, interacts with RPA and DHX9, and engages in resolving R-loops at certain loci, particularly at the CA repeat microsatellite loci. Depletion of TUG1 leads to overabundant R-loops and enhanced RS, leading to substantial inhibition of tumor growth. Our data reveal a role of TUG1 as molecule important for resolving R-loop accumulation in cancer cells and suggest targeting TUG1 as a potent therapeutic approach for cancer treatment.


Neoplasms , R-Loop Structures , Humans , DNA Replication/genetics , Cell Proliferation/genetics , Neoplasms/genetics , Microsatellite Repeats/genetics , Taurine
3.
JMA J ; 6(2): 104-113, 2023 Apr 14.
Article En | MEDLINE | ID: mdl-37179717

Gene regulation by microRNAs (miRNAs) plays important roles in development, physiology, and disease. miRNAs are an abundant class of noncoding RNAs that are generated through multistep biosynthetic pathways and typically repress gene expression through target destabilization and translational inhibition. Complex interactions between miRNAs and target mRNAs are associated with characteristic molecular mechanisms, including miRNA cotargeting, target-directed miRNA degradation, and crosstalk with various RNA-binding proteins. Consistent with the broad influence on cellular function, miRNA deregulation is commonly observed in various diseases, particularly cancer, with both tumor-suppressive and oncogenic roles. Mutations in the miRNA biosynthetic pathway and several miRNA genes have been linked to diverse types of cancer and a subset of genetic diseases, respectively. Additionally, super-enhancers play important roles in the regulation of cell type-specific and disease-associated miRNAs. This review summarizes the molecular features of miRNA biogenesis and target regulation along with the roles of miRNAs in disease biology, with recent examples expanding the pathophysiological roles of miRNAs.

4.
Nat Biomed Eng ; 7(5): 672-691, 2023 05.
Article En | MEDLINE | ID: mdl-37037965

The precise regulation of the activity of Cas9 is crucial for safe and efficient editing. Here we show that the genome-editing activity of Cas9 can be constrained by the addition of cytosine stretches to the 5'-end of conventional single-guide RNAs (sgRNAs). Such a 'safeguard sgRNA' strategy, which is compatible with Cas12a and with systems for gene activation and interference via CRISPR (clustered regularly interspaced short palindromic repeats), leads to the length-dependent inhibition of the formation of functional Cas9 complexes. Short cytosine extensions reduced p53 activation and cytotoxicity in human pluripotent stem cells, and enhanced homology-directed repair while maintaining bi-allelic editing. Longer extensions further decreased on-target activity yet improved the specificity and precision of mono-allelic editing. By monitoring indels through a fluorescence-based allele-specific system and computational simulations, we identified optimal windows of Cas9 activity for a number of genome-editing applications, including bi-allelic and mono-allelic editing, and the generation and correction of disease-associated single-nucleotide substitutions via homology-directed repair. The safeguard-sgRNA strategy may improve the safety and applicability of genome editing.


CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems , Humans , CRISPR-Cas Systems/genetics , Cytosine , Gene Editing , Recombinational DNA Repair
5.
Cells ; 12(2)2023 01 13.
Article En | MEDLINE | ID: mdl-36672241

MicroRNAs (miRNAs) are versatile, post-transcriptional regulators of gene expression. Canonical miRNAs are generated through the two-step DROSHA- and DICER-mediated processing of primary miRNA (pri-miRNA) transcripts with optimal or suboptimal features for DROSHA and DICER cleavage and loading into Argonaute (AGO) proteins, whereas multiple hairpin-structured RNAs are encoded in the genome and could be a source of non-canonical miRNAs. Recent advances in miRNA biogenesis research have revealed details of the structural basis of miRNA processing and cluster assistance mechanisms that facilitate the processing of suboptimal hairpins encoded together with optimal hairpins in polycistronic pri-miRNAs. In addition, a deeper investigation of miRNA-target interaction has provided insights into the complexity of target recognition with distinct outcomes, including target-mediated miRNA degradation (TDMD) and cooperation in target regulation by multiple miRNAs. Therefore, the coordinated or network regulation of both miRNA biogenesis and miRNA-target interaction is prevalent in miRNA biology. Alongside recent advances in the mechanistic investigation of miRNA functions, this review summarizes recent findings regarding the ordered regulation of miRNA biogenesis and miRNA-target interaction.


MicroRNAs , MicroRNAs/metabolism , RNA Processing, Post-Transcriptional
6.
BMC Biol ; 20(1): 248, 2022 11 11.
Article En | MEDLINE | ID: mdl-36357926

BACKGROUND: Combinatorial gene regulation by multiple microRNAs (miRNAs) is widespread and closely spaced target sites often act cooperatively to achieve stronger repression ("neighborhood" miRNA cotargeting). While miRNA cotarget sites are suggested to be more conserved and implicated in developmental control, the pathological significance of miRNA cotargeting remains elusive. RESULTS: Here, we report the pathogenic impacts of combinatorial miRNA regulation on inflammation in systemic lupus erythematosus (SLE). In the SLE mouse model, we identified the downregulation of two miRNAs, miR-128 and miR-148a, by TLR7 stimulation in plasmacytoid dendritic cells. Functional analyses using human cell lines demonstrated that miR-128 and miR-148a additively target KLF4 via extensively overlapping target sites ("seed overlap" miRNA cotargeting) and suppress the inflammatory responses. At the transcriptome level, "seed overlap" miRNA cotargeting increases susceptibility to downregulation by two miRNAs, consistent with additive but not cooperative recruitment of two miRNAs. Systematic characterization further revealed that extensive "seed overlap" is a prevalent feature among broadly conserved miRNAs. Highly conserved target sites of broadly conserved miRNAs are largely divided into two classes-those conserved among eutherian mammals and from human to Coelacanth, and the latter, including KLF4-cotargeting sites, has a stronger association with both "seed overlap" and "neighborhood" miRNA cotargeting. Furthermore, a deeply conserved miRNA target class has a higher probability of haplo-insufficient genes. CONCLUSIONS: Our study collectively suggests the complexity of distinct modes of miRNA cotargeting and the importance of their perturbations in human diseases.


Lupus Erythematosus, Systemic , MicroRNAs , Humans , Animals , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Down-Regulation , Transcriptome , Mammals/genetics
7.
Nagoya J Med Sci ; 84(2): 216-229, 2022 May.
Article En | MEDLINE | ID: mdl-35967935

Abnormalities in the regulation of gene expression are associated with various pathological conditions. Among the distal regulatory elements in the genome, the activation of target genes by enhancers plays a central role in the formation of cell type-specific gene expression patterns. Super-enhancers are a subclass of enhancers that frequently contain multiple enhancer-like elements and are characterized by dense binding of master transcription factors and Mediator complexes and high signals of active histone marks. Super-enhancers have been studied in detail as important regulatory regions that control cell identity and contribute to the pathogenesis of diverse diseases. In cancer, super-enhancers have multifaceted roles by activating various oncogenes and other cancer-related genes and shaping characteristic gene expression patterns in cancer cells. Alterations in super-enhancer activities in cancer involve multiple mechanisms, including the dysregulation of transcription factors and the super-enhancer-associated genomic abnormalities. The study of super-enhancers could contribute to the identification of effective biomarkers and the development of cancer therapeutics targeting transcriptional addiction. In this review, we summarize the roles of super-enhancers in cancer biology, with a particular focus on hematopoietic malignancies, in which multiple super-enhancer alteration mechanisms have been reported.


Enhancer Elements, Genetic , Neoplasms , Enhancer Elements, Genetic/genetics , Humans , Neoplasms/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Nat Immunol ; 23(9): 1330-1341, 2022 09.
Article En | MEDLINE | ID: mdl-35999392

Fibroblasts, the most abundant structural cells, exert homeostatic functions but also drive disease pathogenesis. Single-cell technologies have illuminated the shared characteristics of pathogenic fibroblasts in multiple diseases including autoimmune arthritis, cancer and inflammatory colitis. However, the molecular mechanisms underlying the disease-associated fibroblast phenotypes remain largely unclear. Here, we identify ETS1 as the key transcription factor governing the pathological tissue-remodeling programs in fibroblasts. In arthritis, ETS1 drives polarization toward tissue-destructive fibroblasts by orchestrating hitherto undescribed regulatory elements of the osteoclast differentiation factor receptor activator of nuclear factor-κB ligand (RANKL) as well as matrix metalloproteinases. Fibroblast-specific ETS1 deletion resulted in ameliorated bone and cartilage damage under arthritic conditions without affecting the inflammation level. Cross-tissue fibroblast single-cell data analyses and genetic loss-of-function experiments lent support to the notion that ETS1 defines the perturbation-specific fibroblasts shared among various disease settings. These findings provide a mechanistic basis for pathogenic fibroblast polarization and have important therapeutic implications.


Arthritis, Rheumatoid , Fibroblasts , Proto-Oncogene Protein c-ets-1 , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Matrix Metalloproteinases/metabolism , Proto-Oncogene Protein c-ets-1/genetics , Proto-Oncogene Protein c-ets-1/metabolism , RANK Ligand/genetics , Transcription Factors/metabolism
9.
Commun Biol ; 5(1): 753, 2022 07 28.
Article En | MEDLINE | ID: mdl-35902687

Adipose-derived mesenchymal stem cells (ASCs) have shown therapeutic potentials against refractory diseases. However, the detailed therapeutic mechanisms remain unclear. Here, we report the therapeutic actions of human ASCs in nephritis, focusing on cellular dynamics and multi-organ networks. Intravenously-administered ASCs accumulated in spleen but not kidneys. Nevertheless, ASCs increased M2 macrophages and Tregs in kidneys and drove strong renoprotection. Splenectomy abolished these therapeutic effects. ASC-derived extracellular vesicles (EVs) were transferred to M2 macrophages, which entered the bloodstream from spleen. EVs induced the transcriptomic signatures of hyperpolarization and PGE2 stimulation in M2 macrophages and ameliorated glomerulonephritis. ASCs, ASC-derived EVs, and EV-transferred M2 macrophages enhanced Treg induction. These findings suggest that EV transfer from spleen-accumulated ASCs to M2 macrophages and subsequent modulation of renal immune-environment underlie the renoprotective effects of ASCs. Our results provide insights into the therapeutic actions of ASCs, focusing on EV-mediated modulation of macrophages and the spleen-kidney immune network.


Extracellular Vesicles , Mesenchymal Stem Cells , Humans , Macrophages , Mesenchymal Stem Cells/physiology , Spleen , T-Lymphocytes, Regulatory
10.
Cancer Sci ; 113(11): 3932-3946, 2022 Nov.
Article En | MEDLINE | ID: mdl-35789143

Small cell lung cancer (SCLC) is a highly aggressive neuroendocrine tumor with dismal prognosis. Recently, molecular subtypes of SCLC have been defined by the expression status of ASCL1, NEUROD1, YAP1, and POU2F3 transcription regulators. ASCL1 is essential for neuroendocrine differentiation and is expressed in the majority of SCLC. Although previous studies investigated ASCL1 target genes in SCLC cells, ASCL1-mediated regulation of miRNAs and its relationship to molecular subtypes remain poorly explored. Here, we performed genome-wide profiling of chromatin modifications (H3K27me3, H3K4me3, and H3K27ac) by CUT&Tag assay and ASCL1 knockdown followed by RNA sequencing and miRNA array analyses in SCLC cells. ASCL1 could preferentially regulate genes associated with super-enhancers (SEs) defined by enrichment of H3K27ac marking. Moreover, ASCL1 positively regulated several SE-associated miRNAs, such as miR-7, miR-375, miR-200b-3p, and miR-429, leading to repression of their targets, whereas ASCL1 suppressed miR-455-3p, an abundant miRNA in other molecular subtypes. We further elucidated unique patterns of SE-associated miRNAs in different SCLC molecular subtypes, highlighting subtype-specific miRNA networks with functional relevance. Notably, we found apparent de-repression of common target genes of different miRNAs following ASCL1 knockdown, suggesting combinatorial action of multiple miRNAs underlying molecular heterogeneity of SCLC (e.g., co-targeting of YAP1 by miR-9 and miR-375). Our comprehensive analyses provide novel insights into SCLC pathogenesis and a clue to understanding subtype-dependent phenotypic differences.


Lung Neoplasms , MicroRNAs , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/metabolism , Lung Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism
11.
Cancer Sci ; 113(2): 382-391, 2022 Feb.
Article En | MEDLINE | ID: mdl-34865286

Understanding the characteristics of cancer cells is essential for the development of improved diagnosis and therapeutics. From a gene regulation perspective, the super-enhancer concept has been introduced to systematically understand the molecular mechanisms underlying the identities of various cell types and has been extended to the analysis of cancer cells and cancer genome alterations. In addition, several characteristic features of super-enhancers have led to the recognition of the link between gene regulation and biomolecular condensates, which is often mediated by liquid-liquid phase separation. Several lines of evidence have suggested molecular and biophysical principles and their alterations in cancer cells, which are particularly associated with gene regulation and cell signaling (" transcriptional" and "signaling" condensates). These findings collectively suggest that the modification of biomolecular condensates represents an important mechanism by which cancer cells acquire various cancer hallmark traits and establish functional innovation for cancer initiation and progression. The condensate model also provides the molecular basis of the vulnerability of cancer cells to transcriptional perturbation and further suggests the possibility of therapeutic targeting of condensates. This review summarizes recent findings regarding the relationships between super-enhancers and biomolecular condensate models, multiple scenarios of condensate alterations in cancers, and the potential of the condensate model for therapeutic development.


Biomolecular Condensates/pathology , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomolecular Condensates/drug effects , Biomolecular Condensates/genetics , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic/drug effects , Humans , Intrinsically Disordered Proteins/genetics , MicroRNAs/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Signal Transduction/genetics , Transcription, Genetic/drug effects
12.
Int J Mol Sci ; 22(24)2021 Dec 13.
Article En | MEDLINE | ID: mdl-34948199

The genome is pervasively transcribed across various species, yielding numerous non-coding RNAs. As a counterbalance for pervasive transcription, various organisms have a nuclear RNA exosome complex, whose structure is well conserved between yeast and mammalian cells. The RNA exosome not only regulates the processing of stable RNA species, such as rRNAs, tRNAs, small nucleolar RNAs, and small nuclear RNAs, but also plays a central role in RNA surveillance by degrading many unstable RNAs and misprocessed pre-mRNAs. In addition, associated cofactors of RNA exosome direct the exosome to distinct classes of RNA substrates, suggesting divergent and/or multi-layer control of RNA quality in the cell. While the RNA exosome is essential for cell viability and influences various cellular processes, mutations and alterations in the RNA exosome components are linked to the collection of rare diseases and various diseases including cancer, respectively. The present review summarizes the relationships between pervasive transcription and RNA exosome, including evolutionary crosstalk, mechanisms of RNA exosome-mediated RNA surveillance, and physiopathological effects of perturbation of RNA exosome.


Exosome Multienzyme Ribonuclease Complex/physiology , RNA Stability/physiology , Transcription, Genetic/genetics , Animals , Exosome Multienzyme Ribonuclease Complex/genetics , Exosome Multienzyme Ribonuclease Complex/metabolism , Genome/genetics , Humans , RNA/genetics , RNA/metabolism , RNA Stability/genetics , RNA, Nuclear/genetics , RNA, Nuclear/metabolism
13.
Sci Rep ; 10(1): 20763, 2020 11 27.
Article En | MEDLINE | ID: mdl-33247161

Hepatitis B virus (HBV) is the major causative factor of chronic viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. We previously demonstrated that a proinflammatory cytokine IL-1ß reduced the level of HBV RNA. However, the mechanism underlying IL-1ß-mediated viral RNA reduction remains incompletely understood. In this study, we report that immune regulator Monocyte chemotactic protein-1-induced protein 1 (MCPIP1) can reduce HBV RNA in hepatocytes. MCPIP1 expression level was higher in the liver tissue of HBV-infected patients and mice. Overexpression of MCPIP1 decreased HBV RNA, whereas ablating MCPIP1 in vitro enhanced HBV production. The domains responsible for RNase activity or oligomerization, were required for MCPIP1-mediated viral RNA reduction. The epsilon structure of HBV RNA was important for its antiviral activity and cleaved by MCPIP1 in the cell-free system. Lastly, knocking out MCPIP1 attenuated the anti-HBV effect of IL-1ß, suggesting that MCPIP1 is required for IL-1ß-mediated HBV RNA reduction. Overall, these results suggest that MCPIP1 may be involved in the antiviral effect downstream of IL-1ß.


Antiviral Agents/pharmacology , Hepatitis B virus/drug effects , Hepatitis B/drug therapy , Host-Pathogen Interactions , Interleukin-1beta/pharmacology , RNA, Viral/chemistry , Virus Replication , Animals , Hep G2 Cells , Hepatitis B/metabolism , Hepatitis B/virology , Humans , Mice , RNA, Viral/drug effects , RNA, Viral/metabolism , Ribonucleases/genetics , Transcription Factors/genetics
14.
Am J Respir Cell Mol Biol ; 63(6): 831-842, 2020 12.
Article En | MEDLINE | ID: mdl-32946266

Fibroblasts provide a structural framework for multiple organs and are essential for wound repair and fibrotic processes. Here, we demonstrate functional roles of FOXL1 (forkhead box L1), a transcription factor that characterizes the pulmonary origin of lung fibroblasts. We detected high FOXL1 transcripts associated with DNA hypomethylation and super-enhancer formation in lung fibroblasts, which is in contrast with fibroblasts derived from other organs. RNA in situ hybridization and immunohistochemistry in normal lung tissue indicated that FOXL1 mRNA and protein are expressed in submucosal interstitial cells together with airway epithelial cells. Transcriptome analysis revealed that FOXL1 could control a broad array of genes that potentiate fibroblast function, including TAZ (transcriptional coactivator with PDZ-binding motif)/YAP (Yes-associated protein) signature genes and PDGFRα (platelet-derived growth factor receptor-α). FOXL1 silencing in lung fibroblasts attenuated cell growth and collagen gel contraction capacity, underscoring the functional importance of FOXL1 in fibroproliferative reactions. Of clinical importance, increased FOXL1 mRNA expression was found in fibroblasts of idiopathic pulmonary fibrosis lung tissue. Our observations suggest that FOXL1 regulates multiple functional aspects of lung fibroblasts as a key transcription factor and is involved in idiopathic pulmonary fibrosis pathogenesis.


Adaptor Proteins, Signal Transducing/metabolism , Fibroblasts/metabolism , Fibrosis/metabolism , Forkhead Transcription Factors/metabolism , Cell Proliferation/physiology , Forkhead Transcription Factors/genetics , Gene Expression Regulation/physiology , Humans , Idiopathic Pulmonary Fibrosis/pathology , Lung/metabolism , Lung/pathology
15.
Nat Immunol ; 21(8): 892-901, 2020 08.
Article En | MEDLINE | ID: mdl-32601470

Autoreactive T cells are eliminated in the thymus to prevent autoimmunity by promiscuous expression of tissue-restricted self-antigens in medullary thymic epithelial cells. This expression is dependent on the transcription factor Fezf2, as well as the transcriptional regulator Aire, but the entire picture of the transcriptional program has been obscure. Here, we found that the chromatin remodeler Chd4, also called Mi-2ß, plays a key role in the self-antigen expression in medullary thymic epithelial cells. To maximize the diversity of self-antigen expression, Fezf2 and Aire utilized completely distinct transcriptional mechanisms, both of which were under the control of Chd4. Chd4 organized the promoter regions of Fezf2-dependent genes, while contributing to the Aire-mediated induction of self-antigens via super-enhancers. Mice deficient in Chd4 specifically in thymic epithelial cells exhibited autoimmune phenotypes, including T cell infiltration. Thus, Chd4 plays a critical role in integrating Fezf2- and Aire-mediated gene induction to establish central immune tolerance.


Autoantigens/immunology , Central Tolerance/physiology , Gene Expression Regulation/immunology , Mi-2 Nucleosome Remodeling and Deacetylase Complex/immunology , Animals , Autoantigens/biosynthesis , DNA Helicases/immunology , DNA Helicases/metabolism , HEK293 Cells , Humans , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mice , Mice, Inbred C57BL , Transcription Factors/immunology , Transcription Factors/metabolism , AIRE Protein
16.
Cancer Discov ; 10(6): 836-853, 2020 06.
Article En | MEDLINE | ID: mdl-32249213

STAG2 encodes a cohesin component and is frequently mutated in myeloid neoplasms, showing highly significant comutation patterns with other drivers, including RUNX1. However, the molecular basis of cohesin-mutated leukemogenesis remains poorly understood. Here we show a critical role of an interplay between STAG2 and RUNX1 in the regulation of enhancer-promoter looping and transcription in hematopoiesis. Combined loss of STAG2 and RUNX1, which colocalize at enhancer-rich, CTCF-deficient sites, synergistically attenuates enhancer-promoter loops, particularly at sites enriched for RNA polymerase II and Mediator, and deregulates gene expression, leading to myeloid-skewed expansion of hematopoietic stem/progenitor cells (HSPC) and myelodysplastic syndromes (MDS) in mice. Attenuated enhancer-promoter loops in STAG2/RUNX1-deficient cells are associated with downregulation of genes with high basal transcriptional pausing, which are important for regulation of HSPCs. Downregulation of high-pausing genes is also confirmed in STAG2-cohesin-mutated primary leukemia samples. Our results highlight a unique STAG2-RUNX1 interplay in gene regulation and provide insights into cohesin-mutated leukemogenesis. SIGNIFICANCE: We demonstrate a critical role of an interplay between STAG2 and a master transcription factor of hematopoiesis, RUNX1, in MDS development, and further reveal their contribution to regulation of high-order chromatin structures, particularly enhancer-promoter looping, and the link between transcriptional pausing and selective gene dysregulation caused by cohesin deficiency.This article is highlighted in the In This Issue feature, p. 747.


Cell Cycle Proteins/deficiency , Chromatin/genetics , Chromosomal Proteins, Non-Histone/deficiency , Core Binding Factor Alpha 2 Subunit/deficiency , Myelodysplastic Syndromes/etiology , Animals , Gene Expression Regulation , Humans , Mice , Mice, Knockout , Cohesins
17.
Int J Mol Sci ; 21(1)2019 Dec 24.
Article En | MEDLINE | ID: mdl-31878193

MicroRNAs (miRNAs) are approximately 22-nucleotide-long, small non-coding RNAs that post-transcriptionally regulate gene expression. The biogenesis of miRNAs involves multiple steps, including the transcription of primary miRNAs (pri-miRNAs), nuclear Drosha-mediated processing, cytoplasmic Dicer-mediated processing, and loading onto Argonaute (Ago) proteins. Further, miRNAs control diverse biological and pathological processes via the silencing of target mRNAs. This review summarizes recent findings regarding the quantitative aspects of miRNA homeostasis, including Drosha-mediated pri-miRNA processing, Ago-mediated asymmetric miRNA strand selection, and modifications of miRNA pathway components, as well as the roles of RNA modifications (epitranscriptomics), epigenetics, transcription factor circuits, and super-enhancers in miRNA regulation. These recent advances have facilitated a system-level understanding of miRNA networks, as well as the improvement of RNAi performance for both gene-specific targeting and genome-wide screening. The comprehensive understanding and modeling of miRNA biogenesis and function have been applied to the design of synthetic gene circuits. In addition, the relationships between miRNA genes and super-enhancers provide the molecular basis for the highly biased cell type-specific expression patterns of miRNAs and the evolution of miRNA-target connections, while highlighting the importance of alterations of super-enhancer-associated miRNAs in a variety of human diseases.


MicroRNAs/metabolism , Animals , Argonaute Proteins/metabolism , Humans , MicroRNAs/genetics , RNA, Messenger/metabolism , Synthetic Biology
18.
Int J Mol Sci ; 20(20)2019 Oct 10.
Article En | MEDLINE | ID: mdl-31658594

Aging is broadly defined as the functional decline that occurs in all body systems. The accumulation of senescent cells is considered a hallmark of aging and thought to contribute to the aging pathologies. Transforming growth factor-ß (TGF-ß) is a pleiotropic cytokine that regulates a myriad of cellular processes and has important roles in embryonic development, physiological tissue homeostasis, and various pathological conditions. TGF-ß exerts potent growth inhibitory activities in various cell types, and multiple growth regulatory mechanisms have reportedly been linked to the phenotypes of cellular senescence and stem cell aging in previous studies. In addition, accumulated evidence has indicated a multifaceted association between TGF-ß signaling and aging-associated disorders, including Alzheimer's disease, muscle atrophy, and obesity. The findings regarding these diseases suggest that the impairment of TGF-ß signaling in certain cell types and the upregulation of TGF-ß ligands contribute to cell degeneration, tissue fibrosis, inflammation, decreased regeneration capacity, and metabolic malfunction. While the biological roles of TGF-ß depend highly on cell types and cellular contexts, aging-associated changes are an important additional context which warrants further investigation to better understand the involvement in various diseases and develop therapeutic options. The present review summarizes the relationships between TGF-ß signaling and cellular senescence, stem cell aging, and aging-related diseases.


Aging/physiology , Cellular Senescence/physiology , Signal Transduction/physiology , Transforming Growth Factor beta/metabolism , Alzheimer Disease/metabolism , Cell Proliferation , Fibrosis , Hematopoietic Stem Cells , Homeostasis , Inflammation , Ligands , Mesenchymal Stem Cells , Muscular Atrophy/metabolism , Obesity/metabolism , Stem Cells
19.
RNA ; 25(10): 1291-1297, 2019 10.
Article En | MEDLINE | ID: mdl-31289130

Argonaute (Ago) proteins interact with various binding partners and play a pivotal role in microRNA (miRNA)-mediated silencing pathways. By utilizing immunoprecipitation followed by mass spectrometry to determine cytoplasmic Ago2 protein complexes in mouse embryonic stem cells (mESCs), we identified a putative RNA-binding protein FAM120A (also known as OSSA/C9ORF10) as an Ago2 interacting protein. Individual nucleotide resolution cross-linking and immunoprecipitation (iCLIP) analysis revealed that FAM120A binds to homopolymeric tracts in 3'-UTRs of about 2000 mRNAs, particularly poly(G) sequences. Comparison of FAM120A iCLIP and Ago2 iCLIP reveals that greater than one-third of mRNAs bound by Ago2 in mESCs are co-bound by FAM120A. Furthermore, such FAM120A-bound Ago2 target genes are not subject to Ago2-mediated target degradation. Reporter assays suggest that the 3'-UTRs of several FAM120A-bound miRNA target genes are less sensitive to Ago2-mediated target repression than those of FAM120A-unbound miRNA targets and FAM120A modulates them via its G-rich target sites. These findings suggest that Ago2 may exist in multiple protein complexes with varying degrees of functionality.


Argonaute Proteins/metabolism , MicroRNAs/metabolism , Nerve Tissue Proteins/metabolism , RNA-Binding Proteins/metabolism , 3' Untranslated Regions , Animals , Cells, Cultured , Embryonic Stem Cells/metabolism , Immunoprecipitation , Mice
20.
Mol Oncol ; 13(8): 1706-1724, 2019 08.
Article En | MEDLINE | ID: mdl-31094056

The tumor microenvironment contains various components, including cancer cells, tumor vessels, and cancer-associated fibroblasts, the latter of which are comprised of tumor-promoting myofibroblasts and tumor-suppressing fibroblasts. Multiple lines of evidence indicate that transforming growth factor-ß (TGF-ß) induces the formation of myofibroblasts and other types of mesenchymal (non-myofibroblastic) cells from endothelial cells. Recent reports show that fibroblast growth factor 2 (FGF2) modulates TGF-ß-induced mesenchymal transition of endothelial cells, but the molecular mechanisms behind the signals that control transcriptional networks during the formation of different groups of fibroblasts remain largely unclear. Here, we studied the roles of FGF2 during the regulation of TGF-ß-induced mesenchymal transition of tumor endothelial cells (TECs). We demonstrated that auto/paracrine FGF signals in TECs inhibit TGF-ß-induced endothelial-to-myofibroblast transition (End-MyoT), leading to suppressed formation of contractile myofibroblast cells, but on the other hand can also collaborate with TGF-ß in promoting the formation of active fibroblastic cells which have migratory and proliferative properties. FGF2 modulated TGF-ß-induced formation of myofibroblastic and non-myofibroblastic cells from TECs via transcriptional regulation of various mesenchymal markers and growth factors. Furthermore, we observed that TECs treated with TGF-ß were more competent in promoting in vivo tumor growth than TECs treated with TGF-ß and FGF2. Mechanistically, we showed that Elk1 mediated FGF2-induced inhibition of End-MyoT via inhibition of TGF-ß-induced transcriptional activation of α-smooth muscle actin promoter by myocardin-related transcription factor-A. Our data suggest that TGF-ß and FGF2 oppose and cooperate with each other during the formation of myofibroblastic and non-myofibroblastic cells from TECs, which in turn determines the characteristics of mesenchymal cells in the tumor microenvironment.


Endothelial Cells/pathology , Fibroblast Growth Factors/metabolism , Myofibroblasts/pathology , Signal Transduction , Transforming Growth Factor beta/metabolism , ets-Domain Protein Elk-1/metabolism , Animals , Autocrine Communication/drug effects , Biomarkers, Tumor/metabolism , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Fibroblast Growth Factors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice, Inbred BALB C , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Paracrine Communication/drug effects , Signal Transduction/drug effects , Trans-Activators/metabolism , Transforming Growth Factor beta/pharmacology
...