Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
J Radiat Res ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39238338

RESUMEN

Ionizing radiation promotes mammary carcinogenesis. Induction of DNA double-strand breaks (DSBs) is the initial event after radiation exposure, which can potentially lead to carcinogenesis, but the dynamics of DSB induction and repair are not well understood at the tissue level. In this study, we used female rats, which have been recognized as a useful experimental model for studying radiation effects on the mammary gland. We focused on differences in DSB kinetics among basal cells, luminal progenitor and mature cells in different parts of the mammary duct. 53BP1 foci were used as surrogate markers of DSBs, and 53BP1 foci in each mammary epithelial cell in immunostained tissue sections were counted 1-24 h after irradiation and fitted to an exponential function of time. Basal cells were identified as cytokeratin (CK) 14+ cells, luminal progenitor cells as CK8 + 18low cells and luminal mature cells as CK8 + 18high cells. The number of DSBs per nucleus tended to be higher in luminal cells than basal cells at 1 h post-irradiation. A model analysis indicated that basal cells in terminal end buds (TEBs), which constitute the leading edge of the mammary duct, had significantly fewer initial DSBs than the two types of luminal cells, and there was no significant difference in initial amount among the cell types in the subtending duct. The repair rate did not differ among mammary epithelial cell types or their locations. Thus, luminal progenitor and mature cells are more susceptible to radiation-induced DSBs than are basal cells in TEBs.

2.
Sci Rep ; 14(1): 18455, 2024 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117746

RESUMEN

Although previous studies have reported that pre-mRNA splicing factors (SFs) are involved in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR), their exact role in promoting HR remains poorly understood. Here, we showed that SART1, an SF upregulated in several types of cancer, promotes DSB end resection, an essential first step of HR. The resection-promoting function of SART1 requires phosphorylation at threonine 430 and 695 by ATM/ATR. SART1 is recruited to DSB sites in a manner dependent on transcription and its RS domain. SART1 is epistatic with BRCA1, a major HR factor, in the promotion of resection, especially transcription-associated resection in the G2 phase. SART1 and BRCA1 accumulate at DSB sites in an interdependent manner, and epistatically counteract the resection blockade posed by 53BP1 and RIF1. Furthermore, chromosome analysis demonstrated that SART1 and BRCA1 epistatically suppressed genomic alterations caused by DSB misrepair in the G2 phase. Collectively, these results indicate that SART1 and BRCA1 cooperatively facilitate resection of DSBs arising in transcriptionally active genomic regions in the G2 phase, thereby promoting faithful repair by HR, and suppressing genome instability.


Asunto(s)
Proteína BRCA1 , Roturas del ADN de Doble Cadena , Reparación del ADN por Recombinación , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Humanos , Factores de Empalme Serina-Arginina/metabolismo , Factores de Empalme Serina-Arginina/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Fosforilación , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Línea Celular Tumoral , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión a Telómeros/genética , Epistasis Genética , Fase G2/genética
3.
Life (Basel) ; 14(8)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39202787

RESUMEN

We developed a technique that can measure corneal transepithelial electrical resistance (TER) in mice, which was used for evaluating corneal toxicity induced by ophthalmic drugs. We used a tissue culture well and its insert to mount the mouse globe and separated the cornea from the rest of the globe to enable corneal TER measurements to be taken. The explanted mouse eyes were divided into groups, and the corneal epithelia were exposed to different concentrations of BAC. Half of these eyes were fixed for transmission electron microscopy (TEM) examination and the other for ZO-1 immunohistochemical (IHC) evaluation. After exposure to control, 0.1%, 0.2%, and 0.5% BAC, the TER was 100 ± 0%, 91 ± 14%, 83 ± 13%, and 34 ± 12% of the pre-exposure TER at 1 min, respectively, with a statistically significant decrease in the 0.5% group. After 3 min, the TER showed a statistically significant decrease in the 0.2% and 0.5% groups. The TEM examinations showed a loss of epithelial tight junctions between superficial cells in the 0.2% and 0.5% groups. The IHC examination showed decreased ZO-1 staining of the corneal epithelium of the same groups as compared to the control. To the best of our knowledge, we succeeded in developing an innovative technique for corneal TER measurement in mice.

4.
J Radiat Res ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007844

RESUMEN

The Planning and Acting Network for Low Dose Radiation Research in Japan (PLANET) was established in 2017 in response to the need for an all-Japan network of experts. It serves as an academic platform to propose strategies and facilitate collaboration to improve quantitative estimation of health risks from ionizing radiation at low-doses and low-dose-rates. PLANET established Working Group 1 (Dose-Rate Effects in Animal Experiments) to consolidate findings from animal experiments on dose-rate effects in carcinogenesis. Considering international trends in this field as well as the situation in Japan, PLANET updated its priority research areas for Japanese low-dose radiation research in 2023 to include (i) characterization of low-dose and low-dose-rate radiation risk, (ii) factors to be considered for individualization of radiation risk, (iii) biological mechanisms of low-dose and low-dose-rate radiation effects and (iv) integration of epidemiology and biology. In this context, PLANET established Working Group 2 (Dose and Dose-Rate Mapping for Radiation Risk Studies) to identify the range of doses and dose rates at which observable effects on different endpoints have been reported; Working Group 3 (Species- and Organ-Specific Dose-Rate Effects) to consider the relevance of stem cell dynamics in radiation carcinogenesis of different species and organs; and Working Group 4 (Research Mapping for Radiation-Related Carcinogenesis) to sort out relevant studies, including those on non-mutagenic effects, and to identify priority research areas. These PLANET activities will be used to improve the risk assessment and to contribute to the revision of the next main recommendations of the International Commission on Radiological Protection.

5.
J Clin Endocrinol Metab ; 109(10): e1827-e1838, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-38576411

RESUMEN

CONTEXT: Telomerase reverse transcriptase promoter (TERT-p) mutations, which upregulate TERT expression, are strongly associated with tumor aggressiveness and worse prognosis in papillary thyroid carcinomas (PTCs). TERT expression is also observed in a proportion of PTCs without TERT-p mutations, but such tumors show less aggressiveness and better prognosis than TERT-p mutation-positive tumors. OBJECTIVE: TERT has multiple splicing variants whose relationships with the TERT-p status and clinicopathological characteristics remain poorly understood. We examined the relationship between the TERT-p mutational status, the TERT splicing pattern, and clinicopathological features. METHODS: We investigated the expression of 2 major variants, α deletion (dA) and ß deletion (dB), in a series of 207 PTCs operated on between November 2001 and March 2020 in Nagasaki University Hospital and Kuma Hospital. RESULTS: The TERT-p mutations were found in 33 cases, and among 174 mutation-negative cases, 24 showed TERT expression. All cases were classified into 3 groups: the TERT-p mutation-negative/expression-negative group (mut-/exp-), the TERT-p mutation-negative/expression-positive group (mut-/exp+), and the TERT-p mutation-positive group (mut+/exp+). The +A+B/dB ratio in mut+/exp+ was significantly higher than that in mut-/exp+ PTCs. Analysis with clinicopathological data revealed that +A+B expression was associated with higher PTC aggressiveness, whereas dB expression counteracted this effect. Functional in vitro study demonstrated that dB strongly inhibited cell growth, migration, and clonogenicity, suggesting its tumor-suppressive role. CONCLUSION: These results provide evidence that the TERT-p mutations alter the expression of different TERT splice variants, which, in turn, associates with different tumor aggressiveness.


Asunto(s)
Mutación , Regiones Promotoras Genéticas , Empalme del ARN , Telomerasa , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Telomerasa/genética , Telomerasa/metabolismo , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/metabolismo , Femenino , Masculino , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/metabolismo , Persona de Mediana Edad , Adulto , Anciano , Pronóstico , ARN Mensajero/metabolismo , ARN Mensajero/genética , Invasividad Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Adulto Joven
6.
Int J Cancer ; 155(6): 1101-1111, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38688826

RESUMEN

Mouse models are vital for assessing risk from environmental carcinogens, including ionizing radiation, yet the interspecies difference in the dose response precludes direct application of experimental evidence to humans. Herein, we take a mathematical approach to delineate the mechanism underlying the human-mouse difference in radiation-related cancer risk. We used a multistage carcinogenesis model assuming a mutational action of radiation to analyze previous data on cancer mortality in the Japanese atomic bomb survivors and in lifespan mouse experiments. Theoretically, the model predicted that exposure will chronologically shift the age-related increase in cancer risk forward by a period corresponding to the time in which the spontaneous mutational process generates the same mutational burden as that the exposure generates. This model appropriately fitted both human and mouse data and suggested a linear dose response for the time shift. The effect per dose decreased with increasing age at exposure similarly between humans and mice on a per-lifespan basis (0.72- and 0.71-fold, respectively, for every tenth lifetime). The time shift per dose was larger by two orders of magnitude in humans (7.8 and 0.046 years per Gy for humans and mice, respectively, when exposed at ~35% of their lifetime). The difference was mostly explained by the two orders of magnitude difference in spontaneous somatic mutation rates between the species plus the species-independent radiation-induced mutation rate. Thus, the findings delineate the mechanism underlying the interspecies difference in radiation-associated cancer mortality and may lead to the use of experimental evidence for risk prediction in humans.


Asunto(s)
Carcinogénesis , Neoplasias Inducidas por Radiación , Animales , Ratones , Neoplasias Inducidas por Radiación/mortalidad , Neoplasias Inducidas por Radiación/genética , Neoplasias Inducidas por Radiación/etiología , Humanos , Carcinogénesis/efectos de la radiación , Mutación , Relación Dosis-Respuesta en la Radiación , Modelos Teóricos , Supervivientes a la Bomba Atómica , Especificidad de la Especie , Radiación Ionizante , Femenino , Masculino
7.
Neonatology ; 121(3): 298-304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38211569

RESUMEN

INTRODUCTION: There is uncertainty and lack of consensus regarding optimal management of patent ductus arteriosus (PDA). We aimed to determine current clinical practice in PDA management across a range of different regions internationally. MATERIALS AND METHODS: We surveyed PDA management practices in neonatal intensive care units using a pre-piloted web-based survey, which was distributed to perinatal societies in 31 countries. The survey was available online from March 2018 to March 2019. RESULTS: There were 812 responses. The majority of clinicians (54%) did not have institutional protocols for PDA treatment, and 42% reported variable management within their own unit. Among infants <28 weeks (or <1,000 g), most clinicians (60%) treat symptomatically. Respondents in Australasia were more likely to treat PDA pre-symptomatically (44% vs. 18% all countries [OR 4.1; 95% CI 2.6-6.5; p < 0.001]), and respondents from North America were more likely to treat symptomatic PDA (67% vs. 60% all countries [OR 2.0; 95% CI 1.5-2.6; p < 0.001]). In infants ≥28 weeks (or ≥1,000 g), most clinicians (54%) treat symptomatically. Respondents in North America were more likely to treat PDAs in this group of infants conservatively (47% vs. 38% all countries [OR 2.3; 95% CI 1.7-3.2; p < 0.001]), and respondents from Asia were more likely to treat the PDA pre-symptomatically (21% vs. 7% all countries [OR 5.5; 95% CI 3.2-9.8; p < 0.001]). DISCUSSION/CONCLUSION: There were marked international differences in clinical practice, highlighting ongoing uncertainty and a lack of consensus regarding PDA management. An international conglomeration to coordinate research that prioritises and addresses these areas of contention is indicated.


Asunto(s)
Conducto Arterioso Permeable , Unidades de Cuidado Intensivo Neonatal , Pautas de la Práctica en Medicina , Conducto Arterioso Permeable/terapia , Humanos , Recién Nacido , Pautas de la Práctica en Medicina/estadística & datos numéricos , Encuestas y Cuestionarios , Unidades de Cuidado Intensivo Neonatal/estadística & datos numéricos , Recien Nacido Prematuro , América del Norte , Encuestas de Atención de la Salud , Femenino , Australasia , Internet
8.
NPJ Aging ; 9(1): 26, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935713

RESUMEN

Understanding the biological effects of low-dose (<100 mGy) ionizing radiation (LDR) is technically challenging. We investigated age-dependent LDR effects using adaptive response experiments in young (7-to 12-week-old) and middle-aged (40-to 62-week-old) C57BL/6 mice. Compared with 3 Gy irradiation, 0.02 Gy preirradiation followed by 3 Gy irradiation prolonged life in young mice but not middle-aged mice. Preirradiation also suppressed irradiation-induced 53BP1 repair foci in the small intestines, splenic apoptosis, and p53 activity in young mice but not middle-aged mice. Young p53+/- C57BL/6 mice did not show these adaptive responses, indicating that insufficient p53 function in young mice mitigated the adaptive responses. Interestingly, p53 activation in middle-aged mice spontaneously became approximately 4.5-fold greater than that in young mice, possibly masking LDR stresses. Furthermore, adaptive responses in young mice, but not in middle-aged mice, suppressed some senescence-associated secretory phenotype (SASP) factors (IL-6, CCL2, CCL5, CXCL1). Thus, LDR-induced adaptive responses associated with specific SASP factors may be attenuated by a combination of reduced DNA damage sensor/transducer function and chronic p53 activation in middle-aged mice.

9.
Radiat Res ; 200(6): 538-547, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37902247

RESUMEN

Autophagy and senescence are closely related cellular responses to genotoxic stress, and play significant roles in the execution of cellular responses to radiation exposure. However, little is known about their interplay in the fate-decision of cells receiving lethal doses of radiation. Here, we report that autophagy precedes the establishment of premature senescence in normal human fibroblasts exposed to lethal doses of radiation. Activation of the p53-dependent DNA damage response caused sustained dephosphorylation of RB proteins and consequent cell cycle arrest, concurrently with Ulk1 dephosphorylation at Ser638 by PPM1D, which promoted autophagy induction 1-2 days after irradiation. In addition, mitochondrial fragmentation became obvious 1-2 days after irradiation, and autophagy was further enhanced. However, Ulk1 levels decreased significantly after 2 days, resulting in lower LC3-II levels. An autophagic flux assay using chloroquine (CQ) also revealed that the flux in irradiated cells gradually decreased over 30 days. In contrast, lysosomal augmentation started at 1 day, became significantly upregulated after 5 days, and continued for over 30 days. After a rapid decrease in autophagy, p16 expression increased and senescence was established, but autophagic activity remained reduced. These results demonstrated that X-ray irradiation triggered two processes, autophagy and senescence, with the former being temporary and regulated by DNA damage response and mitophagy, and the latter being sustained and regulated by persistent cell cycle arrest. The interplay between autophagy and senescence seems to be essential for the proper implementation of the cellular response to radiation exposure.


Asunto(s)
Autofagia , Exposición a la Radiación , Humanos , Puntos de Control del Ciclo Celular , Daño del ADN , Senescencia Celular/genética
10.
J Radiat Res ; 64(2): 210-227, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36773323

RESUMEN

While epidemiological data are available for the dose and dose-rate effectiveness factor (DDREF) for human populations, animal models have contributed significantly to providing quantitative data with mechanistic insights. The aim of the current review is to compile both the in vitro experiments with reference to the dose-rate effects of DNA damage and repair, and the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. In particular, the review focuses especially on the results pertaining to underlying biological mechanisms and discusses their possible involvement in the process of radiation-induced carcinogenesis. Because the concept of adverse outcome pathway (AOP) together with the key events has been considered as a clue to estimate radiation risks at low doses and low dose-rates, the review scrutinized the dose-rate dependency of the key events related to carcinogenesis, which enables us to unify the underlying critical mechanisms to establish a connection between animal experimental studies with human epidemiological studies.


Asunto(s)
Glándulas Mamarias Humanas , Neoplasias Inducidas por Radiación , Exposición a la Radiación , Animales , Humanos , Relación Dosis-Respuesta en la Radiación , Neoplasias Inducidas por Radiación/etiología , Medición de Riesgo/métodos , Exposición a la Radiación/efectos adversos , Carcinogénesis , Modelos Animales , Tracto Gastrointestinal
11.
J Radiat Res ; 64(2): 228-249, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36773331

RESUMEN

While epidemiological data have greatly contributed to the estimation of the dose and dose-rate effectiveness factor (DDREF) for human populations, studies using animal models have made significant contributions to provide quantitative data with mechanistic insights. The current article aims at compiling the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. This review focuses specifically on the results that explain the biological mechanisms underlying dose-rate effects and their potential involvement in radiation-induced carcinogenic processes. Since the adverse outcome pathway (AOP) concept together with the key events holds promise for improving the estimation of radiation risk at low doses and low dose-rates, the review intends to scrutinize dose-rate dependency of the key events in animal models and to consider novel key events involved in the dose-rate effects, which enables identification of important underlying mechanisms for linking animal experimental and human epidemiological studies in a unified manner.


Asunto(s)
Sistema Hematopoyético , Neoplasias Inducidas por Radiación , Exposición a la Radiación , Animales , Humanos , Dosis de Radiación , Medición de Riesgo/métodos , Exposición a la Radiación/efectos adversos , Modelos Animales , Hígado , Pulmón , Relación Dosis-Respuesta en la Radiación
12.
Cancers (Basel) ; 15(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36831453

RESUMEN

Tumor budding (TB), a microscopic finding in the stroma ahead of the invasive fronts of tumors, has been well investigated and reported as a prognostic marker in head and neck squamous cell carcinoma (HNSCC). Epithelial-mesenchymal transition (EMT) is a crucial step in tumor progression and metastasis, and its status cannot be distinguished from TB. The current understanding of partial EMT (p-EMT), the so-called halfway step of EMT, focuses on the tumor microenvironment (TME). Although this evidence has been investigated, the clinicopathological and biological relationship between TB and p-EMT remains debatable. At the invasion front, previous research suggested that cancer-associated fibroblasts (CAFs) are important for tumor progression, metastasis, p-EMT, and TB formation in the TME. Although there is biological evidence of TB drivers, no report has focused on their organized functional relationships. Understanding the mechanism of TB onset and the relationship between p-EMTs may facilitate the development of novel diagnostic and prognostic methods, and targeted therapies for the prevention of metastasis in epithelial cancer. Thus far, major pieces of evidence have been established from colorectal cancer (CRC), due to a large number of patients with the disease. Herein, we review the current understanding of p-EMT and TME dynamics and discuss the relationship between TB development and p-EMT, focusing on CAFs, hypoxia, tumor-associated macrophages, laminin-integrin crosstalk, membrane stiffness, enzymes, and viral infections in cancers, and clarify the gap of evidence between HNSCC and CRC.

13.
Adv Radiat Oncol ; 8(3): 101159, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36793509

RESUMEN

Purpose: Understanding the immune response during radiation therapy (RT) in a clinical setting is imperative for maximizing the efficacy of combined RT and immunotherapy. Calreticulin, a major damage-associated molecular pattern that is exposed on the cell surface after RT, is presumed to be associated with the tumor-specific immune response. Here, we examined changes in calreticulin expression in clinical specimens obtained before and during RT and analyzed its relationship with the density of CD8+ T cells in the same patient set. Methods and Materials: This retrospective analysis evaluated 67 patients with cervical squamous cell carcinoma who were treated with definitive RT. Tumor biopsy specimens were collected before RT and after 10 Gy irradiation. Calreticulin expression in tumor cells was evaluated via immunohistochemical staining. Subsequently, the patients were divided into 2 groups according to the level of calreticulin expression, and the clinical outcomes were compared. Finally, the correlation between calreticulin levels and density of stromal CD8+ T cells was evaluated. Results: The calreticulin expression significantly increased after 10 Gy (82% of patients showed an increase; P < .01). Patients with increased calreticulin levels tended to show better progression-free survival, but this was not statistically significant (P = .09). In patients with high expression of calreticulin, a positive trend was observed between calreticulin and CD8+ T cell density, but the association was not statistically significant (P = .06). Conclusions: Calreticulin expression increased after 10 Gy irradiation in tissue biopsies of patients with cervical cancer. Higher calreticulin expression levels are potentially associated with better progression-free survival and greater T cell positivity, but there was no statistically significant relationship between calreticulin upregulation and clinical outcomes or CD8+ T cell density. Further analysis will be required to clarify mechanisms underlying the immune response to RT and to optimize the RT and immunotherapy combination approach.

14.
J Radiat Res ; 64(2): 300-303, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36617210

RESUMEN

We examined here normal human cells with large deletions encompassing the hypoxanthine-phosphoribosyltransferase 1 (HPRT1) gene on X chromosome. Expression levels of genes on X chromosome were analyzed by microarray and RT-qPCR method, and differentially expressed genes (DEGs) were extracted. We found that DEGs were not limited to the genes flanking deleted regions but spread over the entire X chromosome. Interestingly, the gene regulation patterns were similar to a large extent among independent clones that have similar-sized large deletions involving the HPRT1 gene. Thus, it is indicated that an impact of large deletion on possible epigenetic transcriptional regulation is not limited to the regions proximal to the deletion region.


Asunto(s)
Cromosomas Humanos X , Hipoxantina Fosforribosiltransferasa , Humanos , Rayos X , Cromosomas Humanos X/genética , Hipoxantina Fosforribosiltransferasa/genética , Células Clonales
15.
Radiat Res ; 199(1): 83-88, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34143221

RESUMEN

The hypoxanthine-phosphoribosyltransferase (HPRT) mutation assay has been widely used to investigate gene mutations induced by radiation. Here, we developed a novel method detecting deletions of multiple exons of the HPRT gene based on real-time quantitative PCR (qPCR). Immortalized normal human fibroblasts (BJ1-hTERT) were irradiated at various doses with γ rays, subjected to the 6-thioguanine (6-TG) selection, and more than one hundred 6-TG-resistant (6-TGR) clones were isolated. High-molecular-weight genomic DNA was extracted, and real-time qPCR was performed with the nine exon-specific primers. Optimization of the primer concentration, appropriate selection of PCR enzyme and refinement of the reaction profiles enabled simultaneous quantitative amplification of each exon. We were able to identify 6-TGR clones with total deletions, which did not show any amplification of the nine exons, and partial deletion mutants, in which one or some of the nine exons were missing, within a few days. This novel technique allows systematic determination of multiple deletions of the HPRT exons induced by ionizing radiation, enabling high-throughput and robust analysis of multiple HPRT mutants.


Asunto(s)
ADN , Hipoxantina Fosforribosiltransferasa , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Exones/genética , Mutación , ADN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Radiat Res ; 199(1): 74-82, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442049

RESUMEN

Dicentric chromosome assay (DCA) is the most accepted cytological technique for the purpose of biological dosimetry in radiological and nuclear accidents, however, it is not always easy to evaluate dicentric chromosomes because of the technical difficulty in identifying dicentric chromosomes on Giemsa-stained metaphase chromosome samples. Here, we applied an antibody recognizing centromere protein (CENP) C, CENP-C, whose antigenicity is resistant to the fixation with Carnoy's solution. Normal human diploid cells were irradiated with various doses of 137Cs γ rays at 1 Gy/ min, treated with hypotonic solution, fixed with Carnoy's fixative, and metaphase chromosome spreads were stained with anti-CENP-C antibody. Dose-dependent induction of dicentric chromosomes was confirmed between 1 and 10 Gy of γ rays, and the results were compatible with those obtained by the conventional Giemsa-stained chromosome samples. The CENP-C assay also uncovered the difference in the fluorescence from the sister centromeres on the same chromosome, which was more pronounced after radiation exposure. Although the underlying mechanism is still to be determined, the result suggests a novel effect of radiation on centromeres. The innovative protocol for CENP-C-based DCA, which enables ideal visualization of centromeres, is simple, effective and reliable. It does not require skilled examiners, so that it may be an alternative method, avoiding uneasiness of the current DCA using Giemsa-stained metaphase chromosome samples.


Asunto(s)
Radioisótopos de Cesio , Proteína C , Humanos , Proteína C/genética , Centrómero , Técnica del Anticuerpo Fluorescente , Dosis de Radiación , Aberraciones Cromosómicas
17.
Sci Rep ; 12(1): 14764, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042341

RESUMEN

Chromosome translocation (TL) is an important mode of genomic changes underlying human tumorigenesis, the detailed mechanisms of which are, however, still not well understood. The two major modalities of DNA double strand break repair, i.e. homologous recombination (HR) and non-homologous end-joining (NHEJ), have been hypothesized. In a typical TL+ human neoplasm, Ewing sarcoma, which is frequently associated with t(11;22) TL encoding the EWS-FLI1 fusion gene, NHEJ has been regarded as a model to explain the disease-specific TL. Using comprehensive microarray approaches, we observed that expression of the HR genes, particularly of RAD51, is upregulated in TL+ Ewing sarcoma cell lines, WE-68 and SK-N-MC, as in the other TL+ tumor cell lines and one defective in DNA mismatch repair (MMR). The upregulated RAD51 expression indeed lead to frequent focus formation, which may suggest an activation of the HR pathway in these cells. Furthermore, sister chromatid exchange was frequently observed in the TL+ and MMR-defective cells. Intriguingly, ionizing irradiation revealed that the decrease of 53BP1 foci was significantly retarded in the Ewing sarcoma cell lines, suggesting that the NHEJ pathway may be less active in the cells. These observations may support an HR involvement, at least in part, to explain TL in Ewing sarcoma.


Asunto(s)
Tumores Neuroectodérmicos Periféricos Primitivos , Sarcoma de Ewing , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Sarcoma de Ewing/patología , Translocación Genética
18.
J Wound Care ; 31(Sup8): S29-S35, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36004943

RESUMEN

OBJECTIVE: Diabetic foot ulcer (DFU) is recognised as a severe complication in patients with type 2 diabetes. With the increasing incidence of diabetes, it represents a major medical challenge. Several models have been proposed to explain its aetiology; however, they have never been assessed by longitudinal histopathological examination, which this study aims to address. METHOD: Multiplex-immunofluorescence analysis was carried out with lengthwise serial skin specimens obtained from the medial thigh, lower leg, ankle, dorsum of foot and acrotarsium close to the DFU region of a patient with type 2 diabetes receiving above the knee amputation. RESULTS: Proximal-to-distal gradual loss of peripheral nerve was demonstrated, accompanied by compromised capillaries in the superficial papillary plexus and distended CD31-positive capillaries in the dorsum of foot. Neural fibres and capillaries were also significantly compromised in the sweat gland acinus in the ankle and dorsum of foot. Injuries in the superficial papillary plexus, sweat gland acinus, and sweat gland-associated adipose tissues were accompanied by significant infiltration of macrophages. These results indicated that longitudinal impairment of local blood circulation could be the cause of peripheral neuropathy, which initiated ulcer formation. Resultant chronic inflammation, involving sweat gland-associated adipose tissue, gave rise to impairment of wound healing, and thus DFU formation. CONCLUSION: Longitudinal histopathological examination demonstrated that impairment of local microvascular circulation (rather than the systemic complication caused by type 2 diabetes) was considered the primary cause of peripheral neuropathy, which initiated ulceration. Together with chronic inflammation in the superficial papillary plexus and sweat gland-associated adipose tissue, it resulted in the development of a DFU. Although this is a study of just one individual's limb, our study provided a unique observation, contributing mechanistic insights into developing novel intervening strategies to prevent and treat DFUs.


Asunto(s)
Diabetes Mellitus Tipo 2 , Pie Diabético , Úlcera del Pie , Amputación Quirúrgica/efectos adversos , Diabetes Mellitus Tipo 2/complicaciones , Pie Diabético/diagnóstico , Humanos , Inflamación , Extremidad Inferior
19.
Neuropathology ; 42(6): 483-487, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35747901

RESUMEN

We semiquantitatively compared the frequency and severity of cerebral amyloid angiopathy (CAA) in the cerebellum and CAA-positive occipital lobe of 60 subjects from routine autopsies. In the 60 subjects with a CAA-positive occipital lobe, cerebellar CAA was observed in 29 subjects (48.3%), and the severity of cerebellar CAA was relatively mild compared with occipital lobe CAA. Capillary CAA was observed in the occipital lobe of 12 subjects and the cerebellum of three subjects. CAA-related vasculopathies were observed in the occipital lobe of 15 subjects and the cerebellum of two subjects. The severity of CAA-related vasculopathy was mild in both of these subjects. Amyloid-ß plaques were observed in the occipital lobe of 54 subjects (90%) and the cerebellum of 16 subjects (26.7%). The severity of amyloid-ß plaques in the cerebellum was mild compared with the occipital lobe. In summary, we confirmed that cerebellar CAA is frequently observed in the cerebellum but with a lower severity than CAA in the occipital lobe.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Humanos , Enfermedad de Alzheimer/patología , Angiopatía Amiloide Cerebral/patología , Péptidos beta-Amiloides/metabolismo , Placa Amiloide/patología , Encéfalo/patología , Lóbulo Occipital/patología
20.
Bioorg Med Chem ; 67: 116764, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35635928

RESUMEN

It is known that p53 is an important transcription factor and plays a central role in ionizing radiation (IR)-induced DNA damage responses such as cell cycle arrest, DNA repair and apoptosis. We previously reported that regulating p53 protein is an effective strategy for modulating cell fate by reducing the acute side effects of radiation therapy. Herein, we report on the discovery of STK160830 as a new radioprotector from a chemical library at The University of Tokyo and the design, synthesis and biological evaluation of its derivatives. The radioprotective activity of STK160830 itself and its derivatives that were synthesized in this work was evaluated using a leukemia cell line, MOLT-4 cells as a model of normal cells that express the p53 protein in a structure-activity relationships (SAR) study. The experimental results suggest that a direct relationship exists between the inhibitory effect of these STK160830 derivatives on the expression level of p53 and their radioprotective activity and that the suppression of p53 by STK160830 derivatives contribute to protecting MOLT-4 cells from apoptosis that is induced by exposure to radiation.


Asunto(s)
Apoptosis , Proteína p53 Supresora de Tumor , Daño del ADN , Reparación del ADN , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA