Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Autophagy ; 20(7): 1673-1680, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38478967

RESUMEN

Macroautophagy/autophagy is the process by which cells degrade their cytoplasmic proteins or organelles in vacuoles to maintain cellular homeostasis under severe environmental conditions. In the yeast Saccharomyces cerevisiae, autophagy-related (Atg) proteins essential for autophagosome formation accumulate near the vacuole to form the dot-shaped phagophore assembly site/pre-autophagosomal structure (PAS). The PAS then generates the phagophore/isolation membrane (PG), which expands to become a closed double-membrane autophagosome. Hereinafter, we refer to the PAS, PG, and autophagosome as autophagy-related structures (ARSs). During autophagosome formation, Atg2 is responsible for tethering the ARS to the endoplasmic reticulum (ER) via ER exit sites (ERESs), and for transferring phospholipids from the ER to ARSs. Therefore, ARS and the ER are spatially close in the presence of Atg2 but are separated in its absence. Because the contact of an ARS with the ER must be established at the earliest stage of autophagosome formation, it is important to know whether the ARS is tethered to the ER. In this study, we developed a rapid and objective method to estimate tethering of the ARS to the ER by measuring the distance between the ARS and ERES under fluorescence microscopy, and found that tethering of the ARS to the ER was lost without Atg1. This method might be useful to predict the tethering activity of Atg2.Abbreviation: ARS, autophagy-related structure; Dautas, automated measurement of the distance between autophagy-related structures and ER exit sites analysis system; ERES, endoplasmic reticulum exit site; PAS, phagophore assembly site/pre-autophagosomal structure; PCR, polymerase chain reaction; PG, phagophore/isolation membrane; prApe1, precursor of vacuolar aminopeptidase I; Qautas, quantitative autophagy-related structure analysis system; SD/CA; synthetic dextrose plus casamino acid medium; WT, wild-type.


Asunto(s)
Autofagosomas , Autofagia , Retículo Endoplásmico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/metabolismo , Autofagia/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Vacuolas/metabolismo
2.
Autophagy ; : 1-2, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38513722

RESUMEN

The disintegration of cytoplasm-to-vacuole targeting (Cvt) bodies and autophagic bodies in vacuoles is essential to the Cvt pathway and macroautophagy in yeast. Atg15 is a vacuolar lipase required for the degradation of both Cvt and autophagic bodies. However, the molecular mechanism of their degradation by Atg15 remains poorly understood. In a recent study, we showed that recombinant Chaetomium thermophilum Atg15 (CtAtg15) possesses phospholipase activity, and that this activity is significantly elevated by proteolytic cleavage at a site away from the active center. The proteolytic cleavage of CtAtg15 causes a conformational change around the active center, resulting in the active open state. Interestingly, activated CtAtg15 can degrade not only Cvt and autophagic bodies but also organelle membranes. On the basis of these results, we propose an activation mechanism by which Atg15, as an "organellase," functions only in vacuoles.

3.
Cell Rep ; 42(12): 113567, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38118441

RESUMEN

Atg15 (autophagy-related 15) is a vacuolar phospholipase essential for the degradation of cytoplasm-to-vacuole targeting (Cvt) bodies and autophagic bodies, hereinafter referred to as intravacuolar/intralysosomal autophagic compartments (IACs), but it remains unknown if Atg15 directly disrupts IAC membranes. Here, we show that the recombinant Chaetomium thermophilum Atg15 lipase domain (CtAtg15(73-475)) possesses phospholipase activity. The activity of CtAtg15(73-475) was markedly elevated by limited digestion. We inserted the human rhinovirus 3C protease recognition sequence and found that cleavage between S159 and V160 was important to activate CtAtg15(73-475). Our molecular dynamics simulation suggested that the cleavage facilitated conformational change around the active center of CtAtg15, resulting in an exposed state. We confirmed that CtAtg15 could disintegrate S. cerevisiae IAC in vivo. Further, both mitochondria and IAC of S. cerevisiae were disintegrated by CtAtg15. This study suggests Atg15 plays a role in disrupting any organelle membranes delivered to vacuoles by autophagy.


Asunto(s)
Proteínas Fúngicas , Membranas Intracelulares , Fosfolipasas , Chaetomium/enzimología , Chaetomium/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fosfolipasas/química , Fosfolipasas/genética , Fosfolipasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Dominios Proteicos , Simulación de Dinámica Molecular , Mitocondrias/metabolismo , Membranas Intracelulares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estructura Terciaria de Proteína , Modelos Moleculares , Activación Enzimática
4.
FEBS Lett ; 597(5): 631-642, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36217212

RESUMEN

Aminopeptidase I (Ape1) is one of the major cargoes of the cytoplasm-to-vacuole targeting (Cvt) pathway, which is a kind of selective autophagy, in Saccharomyces cerevisiae. After synthesis, the Ape1 precursor (prApe1) undergoes phase separation to form liquid droplets, termed Ape1 droplets, in the cytoplasm. In this study, we found that cells expressing prApe1-GFP exhibited temperature-sensitive formation of Ape1 droplets, which affected its transport. Moreover, we showed that endogenous Ape1 transport was defective at high temperatures in various laboratory strains due to the defect in the formation of Ape1 droplets at these temperatures. Finally, we found that gene disruptants showing heat-tolerant growth suppressed the temperature sensitivity of the Ape1 transport. The formation of Ape1 droplets might be an indicator of cytoplasmic integrity at high temperature.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Vacuolas , Vacuolas/metabolismo , Saccharomyces cerevisiae/metabolismo , Temperatura , Autofagia , Citoplasma/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Aminopeptidasas/genética , Aminopeptidasas/metabolismo
5.
Mol Biol Cell ; 32(8): 645-663, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33625870

RESUMEN

Autophagy is a cellular degradation system widely conserved among eukaryotes. During autophagy, cytoplasmic materials fated for degradation are compartmentalized in double membrane-bound organelles called autophagosomes. After fusing with the vacuole, their inner membrane-bound structures are released into the vacuolar lumen to become autophagic bodies and eventually degraded by vacuolar hydrolases. Atg15 is a lipase that is essential for disintegration of autophagic body membranes and has a transmembrane domain at the N-terminus and a lipase domain at the C-terminus. However, the roles of the two domains in vivo are not well understood. In this study, we found that the N-terminal domain alone can travel to the vacuole via the multivesicular body pathway, and that targeting of the C-terminal lipase domain to the vacuole is required for degradation of autophagic bodies. Moreover, we found that the C-terminal domain could disintegrate autophagic bodies when it was transported to the vacuole via the Pho8 pathway instead of the multivesicular body pathway. Finally, we identified H435 as one of the residues composing the putative catalytic triad and W466 as an important residue for degradation of autophagic bodies. This study may provide a clue to how the C-terminal lipase domain recognizes autophagic bodies to degrade them.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/fisiología , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/fisiología , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Autofagosomas/metabolismo , Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Transporte Biológico , Hidrolasas de Éster Carboxílico/genética , Citoplasma/metabolismo , Lipasa/metabolismo , Glicoproteínas de Membrana/genética , Dominios Proteicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo
6.
Nature ; 578(7794): 301-305, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025038

RESUMEN

Many biomolecules undergo liquid-liquid phase separation to form liquid-like condensates that mediate diverse cellular functions1,2. Autophagy is able to degrade such condensates using autophagosomes-double-membrane structures that are synthesized de novo at the pre-autophagosomal structure (PAS) in yeast3-5. Whereas Atg proteins that associate with the PAS have been characterized, the physicochemical and functional properties of the PAS remain unclear owing to its small size and fragility. Here we show that the PAS is in fact a liquid-like condensate of Atg proteins. The autophagy-initiating Atg1 complex undergoes phase separation to form liquid droplets in vitro, and point mutations or phosphorylation that inhibit phase separation impair PAS formation in vivo. In vitro experiments show that Atg1-complex droplets can be tethered to membranes via specific protein-protein interactions, explaining the vacuolar membrane localization of the PAS in vivo. We propose that phase separation has a critical, active role in autophagy, whereby it organizes the autophagy machinery at the PAS.


Asunto(s)
Autofagosomas/química , Autofagosomas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/química , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Fosforilación , Mutación Puntual , Unión Proteica , Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo
7.
Mol Cell ; 77(6): 1163-1175.e9, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31995729

RESUMEN

Clearance of biomolecular condensates by selective autophagy is thought to play a crucial role in cellular homeostasis. However, the mechanism underlying selective autophagy of condensates and whether liquidity determines a condensate's susceptibility to degradation by autophagy remain unknown. Here, we show that the selective autophagic cargo aminopeptidase I (Ape1) undergoes phase separation to form semi-liquid droplets. The Ape1-specific receptor protein Atg19 localizes to the surface of Ape1 droplets both in vitro and in vivo, with the "floatability" of Atg19 preventing its penetration into droplets. In vitro reconstitution experiments reveal that Atg19 and lipidated Atg8 are necessary and sufficient for selective sequestration of Ape1 droplets by membranes. This sequestration is impaired by mutational solidification of Ape1 droplets or diminished ability of Atg19 to float. Taken together, we propose that cargo liquidity and the presence of sufficient amounts of autophagic receptor on cargo are crucial for selective autophagy of biomolecular condensates.


Asunto(s)
Aminopeptidasas/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Receptores de Superficie Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Aminopeptidasas/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Citoplasma/metabolismo , Mutación , Unión Proteica , Transporte de Proteínas , Receptores de Superficie Celular/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Solubilidad , Proteínas de Transporte Vesicular/genética
8.
Nat Struct Mol Biol ; 26(4): 281-288, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30911189

RESUMEN

A key event in autophagy is autophagosome formation, whereby the newly synthesized isolation membrane (IM) expands to form a complete autophagosome using endomembrane-derived lipids. Atg2 physically links the edge of the expanding IM with the endoplasmic reticulum (ER), a role that is essential for autophagosome formation. However, the molecular function of Atg2 during ER-IM contact remains unclear, as does the mechanism of lipid delivery to the IM. Here we show that the conserved amino-terminal region of Schizosaccharomyces pombe Atg2 includes a lipid-transfer-protein-like hydrophobic cavity that accommodates phospholipid acyl chains. Atg2 bridges highly curved liposomes, thereby facilitating efficient phospholipid transfer in vitro, a function that is inhibited by mutations that impair autophagosome formation in vivo. These results suggest that Atg2 acts as a lipid-transfer protein that supplies phospholipids for autophagosome formation.


Asunto(s)
Autofagosomas/metabolismo , Retículo Endoplásmico/metabolismo , Schizosaccharomyces/metabolismo , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Portadoras/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas/metabolismo , Fosfolípidos/metabolismo
9.
Autophagy ; 13(12): 2104-2110, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28980865

RESUMEN

When macroautophagy (autophagy) is induced by nutrient starvation or rapamycin treatment, Atg (autophagy-related) proteins are assembled at a restricted region close to the vacuole. Subsequently, the phagophore expands to form a closed autophagosome. In Saccharomyces cerevisiae cells overexpressing precursor Ape1 (prApe1), a specific autophagosome cargo protein, the phagophore can be visualized as a cup-shaped structure labeled with green fluorescent protein (GFP)-tagged Atg8. Previously, our group has shown that the maximum length of GFP-Atg8-labeled structures reflects the magnitude of bulk autophagy. In that study, the morphological parameters of the autophagy-related structures were extracted manually, requiring a great deal of time. Moreover, only well-expanded phagophores were subjected to further analysis. Here we report Qautas (Quantitative autophagy-related structure analysis system), a high-throughput and comprehensive system for morphological analysis of autophagy-related structures using a combination of image processing and machine learning. We describe both the manual method and Qautas in detail.


Asunto(s)
Autofagia , Saccharomyces cerevisiae/citología , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Procesamiento de Imagen Asistido por Computador , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
PLoS One ; 12(7): e0181047, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28704456

RESUMEN

Autophagy, an intracellular degradation system, is highly conserved among eukaryotes from yeast to mammalian cells. In the yeast Saccharomyces cerevisiae, most Atg (autophagy-related) proteins, which are essential for autophagosome formation, are recruited to a restricted region close to the vacuole, termed the vacuole-isolation membrane contact site (VICS), upon induction of autophagy. Subsequently, the isolation membrane (IM) expands and sequesters cytoplasmic materials to become a closed autophagosome. In S. cerevisiae, the ubiquitin-like protein Atg8 is C-terminally conjugated to the phospholipid phosphatidylethanolamine (PE) to generate Atg8-PE. During autophagosome formation, Atg8-PE is cleaved by Atg4 to release delipidated Atg8 (Atg8G116) and PE. Although delipidation of Atg8-PE is important for autophagosome formation, it remains controversial whether the delipidation reaction is required for targeting of Atg8 to the VICS or for subsequent IM expansion. We used an IM visualization technique to clearly demonstrate that delipidation of Atg8-PE is dispensable for targeting of Atg8 to the VICS, but required for IM expansion. Moreover, by overexpressing Atg8G116, we showed that the delipidation reaction of Atg8-PE by Atg4 plays an important role in efficient expansion of the IM other than supplying unlipidated Atg8G116. Finally, we suggested the existence of biological membranes at the Atg8-labeled structures in Atg8-PE delipidation-defective cells, but not at those in atg2Δ cells. Taken together, it is likely that Atg2 is involved in localization of biological membranes to the VICS, where Atg4 is responsible for IM expansion.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Fagosomas/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Autofagosomas/metabolismo , Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Membrana Celular/metabolismo , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Fagosomas/metabolismo , Fosfatidiletanolaminas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Mol Biol Cell ; 28(23): 3415-3427, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-28566553

RESUMEN

We investigated the global landscape of Ca2+ homeostasis in budding yeast based on high-dimensional chemical-genetic interaction profiles. The morphological responses of 62 Ca2+-sensitive (cls) mutants were quantitatively analyzed with the image processing program CalMorph after exposure to a high concentration of Ca2+ After a generalized linear model was applied, an analysis of covariance model was used to detect significant Ca2+-cls interactions. We found that high-dimensional, morphological Ca2+-cls interactions were mixed with positive (86%) and negative (14%) chemical-genetic interactions, whereas one-dimensional fitness Ca2+-cls interactions were all negative in principle. Clustering analysis with the interaction profiles revealed nine distinct gene groups, six of which were functionally associated. In addition, characterization of Ca2+-cls interactions revealed that morphology-based negative interactions are unique signatures of sensitized cellular processes and pathways. Principal component analysis was used to discriminate between suppression and enhancement of the Ca2+-sensitive phenotypes triggered by inactivation of calcineurin, a Ca2+-dependent phosphatase. Finally, similarity of the interaction profiles was used to reveal a connected network among the Ca2+ homeostasis units acting in different cellular compartments. Our analyses of high-dimensional chemical-genetic interaction profiles provide novel insights into the intracellular network of yeast Ca2+ homeostasis.


Asunto(s)
Calcio/metabolismo , Calcineurina/metabolismo , Análisis por Conglomerados , Citoplasma/metabolismo , Genes Fúngicos/genética , Homeostasis/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Cell Rep ; 16(1): 19-27, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27320913

RESUMEN

Selective autophagy mediates the degradation of various cargoes, including protein aggregates and organelles, thereby contributing to cellular homeostasis. Cargo receptors ensure selectivity by tethering specific cargo to lipidated Atg8 at the isolation membrane. However, little is known about the structural requirements underlying receptor-mediated cargo recognition. Here, we report structural, biochemical, and cell biological analysis of the major selective cargo protein in budding yeast, aminopeptidase I (Ape1), and its complex with the receptor Atg19. The Ape1 propeptide has a trimeric coiled-coil structure, which tethers dodecameric Ape1 bodies together to form large aggregates. Atg19 disassembles the propeptide trimer and forms a 2:1 heterotrimer, which not only blankets the Ape1 aggregates but also regulates their size. These receptor activities may promote elongation of the isolation membrane along the aggregate surface, enabling sequestration of the cargo with high specificity.


Asunto(s)
Aminopeptidasas/química , Aminopeptidasas/metabolismo , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Agregado de Proteínas , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Cristalografía por Rayos X , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Transporte de Proteínas , Vacuolas/metabolismo
13.
J Biol Chem ; 290(13): 8146-53, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25645919

RESUMEN

Macroautophagy (autophagy) is a highly conserved cellular recycling process involved in degradation of eukaryotic cellular components. During autophagy, macromolecules and organelles are sequestered into the double-membrane autophagosome and degraded in the vacuole/lysosome. Autophagy-related 8 (Atg8), a core Atg protein essential for autophagosome formation, is a marker of several autophagic structures: the pre-autophagosomal structure (PAS), isolation membrane (IM), and autophagosome. Atg8 is conjugated to phosphatidylethanolamine (PE) through a ubiquitin-like conjugation system to yield Atg8-PE; this reaction is called Atg8 lipidation. Although the mechanisms of Atg8 lipidation have been well studied in vitro, the cellular locale of Atg8 lipidation remains enigmatic. Atg3 is an E2-like enzyme that catalyzes the conjugation reaction between Atg8 and PE. Therefore, we hypothesized that the localization of Atg3 would provide insights about the site of the lipidation reaction. To explore this idea, we constructed functional GFP-tagged Atg3 (Atg3-GFP) by inserting the GFP portion immediately after the handle region of Atg3. During autophagy, Atg3-GFP transiently formed a single dot per cell on the vacuolar membrane. This Atg3-GFP dot colocalized with 2× mCherry-tagged Atg8, demonstrating that Atg3 is localized to autophagic structures. Furthermore, we found that Atg3-GFP is localized to the IM by fine-localization analysis. The localization of Atg3 suggests that Atg3 plays an important role in autophagosome formation at the IM.


Asunto(s)
Autofagia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Enzimas Ubiquitina-Conjugadoras/metabolismo , Proteínas Relacionadas con la Autofagia , Proteínas Fluorescentes Verdes/metabolismo , Membranas Intracelulares/enzimología , Microscopía Fluorescente , Fagosomas/enzimología , Fosfatidiletanolaminas , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Vacuolas/enzimología
14.
PLoS One ; 9(3): e91651, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24626240

RESUMEN

Macroautophagy (autophagy) is a bulk protein-degradation system ubiquitously conserved in eukaryotic cells. During autophagy, cytoplasmic components are enclosed in a membrane compartment, called an autophagosome. The autophagosome fuses with the vacuole/lysosome and is degraded together with its cargo. Because autophagy is important for the maintenance of cellular homeostasis by degrading unwanted proteins and organelles, identification of autophagosome cargo proteins (i.e., the targets of autophagy) will aid in understanding the physiological roles of autophagy. In this study, we developed a method for monitoring intact autophagosomes ex vivo by detecting the fluorescence of GFP-fused aminopeptidase I, the best-characterized selective cargo of autophagosomes in Saccharomyces cerevisiae. This method facilitated optimization of a biochemical procedure to fractionate autophagosomes. A combination of LC-MS/MS with subsequent statistical analyses revealed a list of autophagosome cargo proteins; some of these are selectively enclosed in autophagosomes and delivered to the vacuole in an Atg11-independent manner. The methods we describe will be useful for analyzing the mechanisms and physiological significance of Atg11-independent selective autophagy.


Asunto(s)
Fagosomas/enzimología , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Autofagia , Proteínas Relacionadas con la Autofagia , Cromatografía Liquida , Citoplasma/metabolismo , Endopeptidasa K/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Homeostasis , Immunoblotting , Microscopía Fluorescente , Análisis de Componente Principal , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometría de Masas en Tándem , Proteínas de Transporte Vesicular/metabolismo
15.
Protoplasma ; 250(6): 1283-93, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23708375

RESUMEN

The acidic environments in the vacuole and other acidic organelles are important for many cellular processes in eukaryotic cells. In this study, we comprehensively investigated the roles of organelle acidification in vacuolar protein localisation in Saccharomyces cerevisiae. After repressing the acidification of acidic compartments by treatment with concanamycin A, a specific inhibitor of vacuolar H(+)-ATPase (V-ATPase), we examined the localisation of GFP-fused proteins that were predicted to localise in the vacuolar lumen or on the vacuolar membrane. Of the 73 proteins examined, 19 changed their localisation to the cytoplasmic region. Localisation changes were evaluated quantitatively using the image processing programme CalMorph. The delocalised proteins included vacuolar hydrolases, V-ATPase subunits, transporters and enzymes for membrane biogenesis, as well as proteins required for protein transport. These results suggest that many alterations in the localisation of vacuolar proteins occur after loss of the acidification of acidic compartments.


Asunto(s)
Ácidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Hidrolasas/metabolismo , Macrólidos/farmacología , Proteínas de la Membrana/metabolismo , Subunidades de Proteína/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vacuolas/efectos de los fármacos
16.
J Cell Sci ; 126(Pt 11): 2534-44, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23549786

RESUMEN

Autophagy is a bulk degradation system mediated by biogenesis of autophagosomes under starvation conditions. In Saccharomyces cerevisiae, a membrane sac called the isolation membrane (IM) is generated from the pre-autophagosomal structure (PAS); ultimately, the IM expands to become a mature autophagosome. Eighteen autophagy-related (Atg) proteins are engaged in autophagosome formation at the PAS. However, the cup-shaped IM was visualized just as a dot by fluorescence microscopy, posing a challenge to further understanding the detailed functions of Atg proteins during IM expansion. In this study, we visualized expanding IMs as cup-shaped structures using fluorescence microscopy by enlarging a selective cargo of autophagosomes, and finely mapped the localizations of Atg proteins. The PAS scaffold proteins (Atg13 and Atg17) and phosphatidylinositol 3-kinase complex I were localized to a position at the junction between the IM and the vacuolar membrane, termed the vacuole-IM contact site (VICS). By contrast, Atg1, Atg8 and the Atg16-Atg12-Atg5 complex were present at both the VICS and the cup-shaped IM. We designate this localization the 'IM' pattern. The Atg2-Atg18 complex and Atg9 localized to the edge of the IM, appearing as two or three dots, in close proximity to the endoplasmic reticulum exit sites. Thus, we designate these dots as the 'IM edge' pattern. These data suggest that Atg proteins play individual roles at spatially distinct locations during IM expansion. These findings will facilitate detailed investigations of the function of each Atg protein during autophagosome formation.


Asunto(s)
Autofagia/fisiología , Fagosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fagosomas/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Cell Death Differ ; 20(1): 43-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22705847

RESUMEN

Autophagy is a bulk degradation system, widely conserved in eukaryotes. Upon starvation, autophagosomes enclose a portion of the cytoplasm and ultimately fuse with the vacuole. The contents of autophagosomes are degraded in the vacuole, and recycled to maintain the intracellular amino-acid pool required for protein synthesis and survival under starvation conditions. Previously, autophagy was thought to be an essentially nonselective pathway, but recent evidence suggests that autophagosomes carry selected cargoes. These studies have identified two categories of selective autophagy - one highly selective and dependent on autophagy-related 11 (Atg11); another, less selective, that is, independent of Atg11. The former, selective category comprises the Cvt pathway, mitophagy, pexophagy and piecemeal microautophagy of the nucleus; acetaldehyde dehydrogenase 6 degradation and ribophagy belong to the latter, less selective category. In this review, I focus on the mechanisms and the physiological roles of these selective types of autophagy.


Asunto(s)
Autofagia/fisiología , Saccharomycetales/fisiología , Mitofagia/fisiología , Saccharomycetales/citología , Saccharomycetales/metabolismo
18.
FEBS Lett ; 586(16): 2473-8, 2012 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-22728243

RESUMEN

The Atg2-Atg18 complex is essential for autophagosome formation in Saccharomyces cerevisiae. In this paper, we show that partial induction of autophagy can proceed in cells expressing engineered variants of Atg2 capable of localizing to the pre-autophagosomal structure (PAS) in the absence of Atg18. Specifically, through the construction of fusion proteins, we show that the fusion to Atg2 of either the phosphatidylinositol 3-phosphate-binding FYVE domain or the core autophagy protein Atg8 allowed limited Atg18-independent recovery of autophagosome formation. These results indicate that effective targeting of Atg2 to the PAS can compensate for loss of Atg18 function in autophagy.


Asunto(s)
Autofagia , Regulación Fúngica de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Relacionadas con la Autofagia , Citoplasma/metabolismo , Ingeniería Genética , Técnicas Genéticas , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Electrónica/métodos , Microscopía Fluorescente/métodos , Mutación , Fosfatos de Fosfatidilinositol/química , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
19.
Dev Cell ; 21(2): 358-65, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21839922

RESUMEN

Macroautophagy (autophagy) is a bulk degradation system for cytoplasmic components and is ubiquitously found in eukaryotic cells. Autophagy is induced under starvation conditions and plays a cytoprotective role by degrading unwanted cytoplasmic materials. The Ty1 transposon, a member of the Ty1/copia superfamily, is the most abundant retrotransposon in the yeast Saccharomyces cerevisiae and acts to introduce mutations in the host genome via Ty1 virus-like particles (VLPs) localized in the cytoplasm. Here we show that selective autophagy downregulates Ty1 transposition by eliminating Ty1 VLPs from the cytoplasm under nutrient-limited conditions. Ty1 VLPs are targeted to autophagosomes by an interaction with Atg19. We propose that selective autophagy safeguards genome integrity against excessive insertional mutagenesis caused during nutrient starvation by transposable elements in eukaryotic cells.


Asunto(s)
Autofagia/genética , Genes Fúngicos , Mutagénesis Insercional/fisiología , Retroelementos/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas Fluorescentes Verdes/genética , Microscopía Electrónica de Transmisión , Modelos Biológicos , Datos de Secuencia Molecular , Nitrógeno/deficiencia , Fagosomas/genética , Fagosomas/metabolismo , Fagosomas/ultraestructura , Estructura Terciaria de Proteína/genética , Retroelementos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
20.
J Biol Chem ; 285(39): 30026-33, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20659891

RESUMEN

In the yeast Saccharomyces cerevisiae, a precursor form of aminopeptidase I (prApe1) and α-mannosidase (Ams1) are selectively transported to the vacuole through the cytoplasm-to-vacuole targeting pathway under vegetative conditions and through autophagy under starvation conditions. Atg19 plays a central role in these processes by linking Ams1 and prApe1 to Atg8 and Atg11. However, little is known about the molecular mechanisms of cargo recognition by Atg19. Here, we report structural and functional analyses of Atg19 and its paralog, Atg34. A protease-resistant domain was identified in the C-terminal region of Atg19, which was also conserved in Atg34. In vitro pulldown assays showed that the C-terminal domains of both Atg19 and Atg34 are responsible for Ams1 binding; these domains are hereafter referred to as Ams1-binding domains (ABDs). The transport of Ams1, but not prApe1, was blocked in atg19Δatg34Δ cells expressing Atg19(ΔABD), indicating that ABD is specifically required for Ams1 transport. We then determined the solution structures of the ABDs of Atg19 and Atg34 using NMR spectroscopy. Both ABD structures have a canonical immunoglobulin fold consisting of eight ß-strands with highly conserved loops clustered at one side of the fold. These facts, together with the results of a mutational analysis, suggest that ABD recognizes Ams1 using these conserved loops.


Asunto(s)
Autofagia/fisiología , Receptores de Superficie Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , alfa-Manosidasa/metabolismo , Aminopeptidasas/química , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia , Proteínas Relacionadas con la Autofagia , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Vacuolas/química , Vacuolas/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , alfa-Manosidasa/química , alfa-Manosidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...