Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39065929

RESUMEN

Converting otherwise wasted kinetic energy present in the environment into usable electrical energy to power wireless sensor nodes, is a green strategy to avoid the use of batteries and wires. Most of the energy harvesters presented in the literature are based on the exploitation of a one-degree-of-freedom arrangement, consisting of a tuned spring-mass system oscillating in the main direction of the exciting vibration source. However, if the direction of excitation changes, the efficiency of the harvester decreases. This paper thus proposes the idea of a curved cantilever beam with a two-degree-of-freedom arrangement, where the two bending natural frequencies of the mechanical resonator are designed to be equal. This is thought to lead to a configuration design that can be used in practical circumstances where excitation varies its direction in the plane. This, in turn, may possibly lead to a more effective energy-harvesting solution to power nodes in a wireless sensor network.

2.
Sensors (Basel) ; 24(14)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39065958

RESUMEN

In recent years, attention to the realization and characterization of wetsuits for scuba diving and other sea sports or activities has increased. The research has aimed to establish reliable and standardized measurement methods to objectively assess wetsuit quality, particularly focusing on their mechanical and thermal properties. In this work, we describe and compare two different measurement methods for the characterization of neoprene wetsuit thermal resistivity. The first method follows the existing regulations in the field, while the second one, which we are originally proposing in this paper, offers an alternative yet accurate way based on a simplified experimental set-up and easier measurements. In both cases, the wetsuit sample under testing was shaped in the form of a cylindrical sleeve of proper dimensions and wrapped around a phantom containing water at a higher temperature and surrounded by water at a lower temperature. The wetsuit's cylindrical surface allows heat flow from the warmer water on the inside to the colder water on the outside through the wetsuit area. In the first case, a thermal steady state was achieved, with constant heat flow from the phantom to the exterior. This was obtained with a power balance between two homogenous quantities. Electrically supplied thermal heating within the phantom was used to balance the thermal energy naturally flowing through the wetsuit's surface. In this first case, a stable and fixed temperature difference was obtained between the inner and the outer surfaces of the wetsuit sample. In the second case, a thermal transient was analyzed during the cooling process of the phantom, and the thermal time constant was measured, providing the sample thermal resistance once the phantom thermal capacity was known. In both cases and methods, the heat flow and thermal resistance of other elements than the wetsuit must be evaluated and compensated for if they are not negligible. Finally, the thermal resistivity per unit area of the wetsuit material was obtained with the product of the wetsuit sample's thermal resistance and the wetsuit area. The measurements, conducted until now by immersing the phantom in a free surface tank, show that both methods-under stationary and under transient temperature conditions-were valid to assess the wetsuit's thermal resistivity. The stationary method somehow provided better accuracy while involving less well-known parameters but at the expense of a more complicated experimental set-up and additional energy consumption. The transitory method, on the other hand, is quite easy to implement and, after careful characterization of the phantom's parameters, it provided similar results to the stationary one. An uncertainty budget was evaluated for both methods, and they did provide highly compatible measurement results, with resistivity values of 0.104(9) m2·K/W (stationary method) and 0.095(9) K·m2/W (transient method) for the same wetsuit sample under testing, which is also consistent with the values in the literature. We finally propose that the novel method is a valid alternative for characterization of the thermal insulation properties of a scuba diving wetsuit.

3.
Sensors (Basel) ; 24(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38894131

RESUMEN

In the paper, a new method of phase measurement error suppression in a phase-sensitive optical time domain reflectometer is proposed and experimentally proved. The main causes of phase measurement errors are identified and considered, such as the influence of the recording interferometer instabilities and laser wavelength instability, which can cause inaccuracies in phase unwrapping. The use of a Mach-Zender interferometer made by 3 × 3 fiber couplers is proposed and tested to provide insensitivity to the recording interferometer and laser source instabilities. It is shown that using all three available photodetectors of the interferometer, instead of just one pair, achieves significantly better accuracy in the phase unwrapping. A novel compensation scheme for accurate phase measurements in a phase-sensitive optical time domain reflectometer is proposed, and a comparison of the measurement signals with or without such compensation is shown and discussed. The proposed method, using three photodetectors, allows for very good compensation of the phase measurement errors arising from common-mode noise from the interferometer and laser source, providing a significant improvement in signal detection. In addition, the method allows the tracking of slow temperature changes in the monitored fiber/object, which is not obtainable when using a simple low-pass filter for phase unwrapping error reduction, as is customary in several systems of this kind.

4.
Sensors (Basel) ; 24(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38610492

RESUMEN

In recent years, attention to the realization of a distributed fiber-optic microphone for the detection and recognition of the human voice has increased, whereby the most popular schemes are based on φ-OTDR. Many issues related to the selection of optimal system parameters and the recognition of registered signals, however, are still unresolved. In this research, we conducted theoretical studies of these issues based on the φ-OTDR mathematical model and verified them with experiments. We designed an algorithm for fiber sensor signal processing, applied a testing kit, and designed a method for the quantitative evaluation of our obtained results. We also proposed a new setup model for lab tests of φ-OTDR single coordinate sensors, which allows for the quick variation of their parameters. As a result, it was possible to define requirements for the best quality of speech recognition; estimation using the percentage of recognized words yielded a value of 96.3%, and estimation with Levenshtein distance provided a value of 15.

5.
Sensors (Basel) ; 23(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37430897

RESUMEN

The paper presents the application of a phase-sensitive optical time-domain reflectometer (phi-OTDR) in the field of urban infrastructure monitoring. In particular, the branched structure of the urban network of telecommunication wells. The encountered tasks and difficulties are described. The possibilities of usage are substantiated, and the numerical values of the event quality classification algorithms applied to experimental data are calculated using machine learning methods. Among the considered methods, the best results were shown by convolutional neural networks, with a probability of correct classification as high as 98.55%.

6.
Opt Lett ; 45(6): 1346-1349, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32163962

RESUMEN

We report on efficient supercontinuum generation in tapered suspended-core $ {{\rm As}_{39}}{{\rm Se}_{61}} $As39Se61 fibers pumped by a femtosecond mode-locked Cr:ZnSe laser. The supercontinuum spectrum spans the mid-infrared spectral region from 1.4 to 4.2 µm, and its spectral coherence is proved by heterodyning with a single-frequency narrow-linewidth Er-fiber laser at 1.55 µm, measuring a beat note with 27-dB signal-to-noise ratio in a resolution bandwidth of 100 kHz. The intensity stability of the supercontinuum radiation is also characterized by relative intensity noise measurements.

7.
Rev Sci Instrum ; 85(12): 125111, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25554330

RESUMEN

A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, "Performance improvement of a measurement station for superconducting cable test," Rev. Sci. Instrum. 83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.

8.
Opt Lett ; 31(22): 3291-3, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17072400

RESUMEN

Continuous-wave laser action has been demonstrated in a diode-pumped Yb:KYF(4) crystal. Crystal growth, spectroscopic measurements, and laser results are presented. A maximum output power of 505 mW, a slope efficiency of 43%, and a continuous wavelength tunability range of 65nm, from 1013 to 1078 nm, have been obtained at room temperature.

9.
J Biomed Opt ; 9(4): 835-43, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15250772

RESUMEN

Hearing aid shells (or earmolds) must couple the hearing aid with the user's ear. Earmolds have to fit the subject's outer ear canal properly to ensure a good performance of the aid. Because of the great variability in the anatomical pattern of the ear, earmolds are custom made. At present, an impression of the subject's ear canal is taken and used to fabricate the silicon-made mold. The postimpression activities that typically are performed during the fabrication process modify the physical dimensions of the resulting earmold and thus affect the fit of the product. A novel system for 3-D laser scanning and mesh reconstruction of the surface of ear canal impressions is presented. The reconstructed impression can be digitally stored and passed directly to dedicated CAD 3-D printing machines to model the silicon earmold and thus achieve the best possible fit. The proposed system is based on a couple of cameras and a commercial laser for the surface digitization and on a straightforward algorithm, based on the deformation of a geometric model, for the reconstruction of the acquired surface. Measurements on objects of well-known geometric features and dimensions are performed to assess the accuracy and repeatability levels of this 3-D acquisition system. Robustness to noise of the proposed reconstruction algorithm is determined by simulations with a synthetic test surface. Finally, the first measurements (acquisition+reconstruction) of closed surfaces from ear canal impressions are reported.


Asunto(s)
Algoritmos , Diseño Asistido por Computadora , Conducto Auditivo Externo/anatomía & histología , Audífonos , Imagenología Tridimensional/métodos , Rayos Láser , Diseño de Prótesis/métodos , Ergonomía/métodos , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Fotogrametría/métodos , Ajuste de Prótesis/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA