Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nature ; 508(7495): 215-21, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24695224

RESUMEN

Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bind in the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.


Asunto(s)
Enzimas Reparadoras del ADN/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Nucleótidos/metabolismo , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Animales , Dominio Catalítico , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cristalización , Daño del ADN , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Masculino , Ratones , Modelos Moleculares , Conformación Molecular , Terapia Molecular Dirigida , Neoplasias/patología , Oxidación-Reducción/efectos de los fármacos , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Pirofosfatasas/antagonistas & inhibidores , Reproducibilidad de los Resultados , Ensayos Antitumor por Modelo de Xenoinjerto , Hidrolasas Nudix
3.
Nucleic Acids Res ; 42(4): 2725-35, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24259428

RESUMEN

The Cox protein from bacteriophage P2 is a small multifunctional DNA-binding protein. It is involved in site-specific recombination leading to P2 prophage excision and functions as a transcriptional repressor of the P2 Pc promoter. Furthermore, it transcriptionally activates the unrelated, defective prophage P4 that depends on phage P2 late gene products for lytic growth. In this article, we have investigated the structural determinants to understand how P2 Cox performs these different functions. We have solved the structure of P2 Cox to 2.4 Å resolution. Interestingly, P2 Cox crystallized in a continuous oligomeric spiral with its DNA-binding helix and wing positioned outwards. The extended C-terminal part of P2 Cox is largely responsible for the oligomerization in the structure. The spacing between the repeating DNA-binding elements along the helical P2 Cox filament is consistent with DNA binding along the filament. Functional analyses of alanine mutants in P2 Cox argue for the importance of key residues for protein function. We here present the first structure from the Cox protein family and, together with previous biochemical observations, propose that P2 Cox achieves its various functions by specific binding of DNA while wrapping the DNA around its helical oligomer.


Asunto(s)
Proteínas de Unión al ADN/química , ADN/química , Proteínas Virales/química , Secuencia de Aminoácidos , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Multimerización de Proteína , Alineación de Secuencia , Proteínas Virales/metabolismo
4.
Proc Natl Acad Sci U S A ; 110(40): E3761-9, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24043784

RESUMEN

Both mitochondria and chloroplasts contain distinct proteolytic systems for precursor protein processing catalyzed by the mitochondrial and stromal processing peptidases and for the degradation of targeting peptides catalyzed by presequence protease. Here, we have identified and characterized a component of the organellar proteolytic systems in Arabidopsis thaliana, the organellar oligopeptidase, OOP (At5g65620). OOP belongs to the M3A family of peptide-degrading metalloproteases. Using two independent in vivo methods, we show that the protease is dually localized to mitochondria and chloroplasts. Furthermore, we localized the OPP homolog At5g10540 to the cytosol. Analysis of peptide degradation by OOP revealed substrate size restriction from 8 to 23 aa residues. Short mitochondrial targeting peptides (presequence of the ribosomal protein L29 and presequence of 1-aminocyclopropane-1-carboxylic acid deaminase 1) and N- and C-terminal fragments derived from the presequence of the ATPase beta subunit ranging in size from 11 to 20 aa could be degraded. MS analysis showed that OOP does not exhibit a strict cleavage pattern but shows a weak preference for hydrophobic residues (F/L) at the P1 position. The crystal structures of OOP, at 1.8-1.9 Å, exhibit an ellipsoidal shape consisting of two major domains enclosing the catalytic cavity of 3,000 Å(3). The structural and biochemical data suggest that the protein undergoes conformational changes to allow peptide binding and proteolysis. Our results demonstrate the complementary role of OOP in targeting-peptide degradation in mitochondria and chloroplasts.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Cloroplastos/enzimología , Metaloendopeptidasas/química , Mitocondrias/enzimología , Modelos Moleculares , Péptidos/metabolismo , Proteolisis , Proteínas de Arabidopsis/metabolismo , Biolística , Vectores Genéticos , Proteínas Fluorescentes Verdes , Espectrometría de Masas , Metaloendopeptidasas/metabolismo , Conformación Proteica , Transporte de Proteínas/fisiología
5.
FEBS Lett ; 585(16): 2617-21, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21787772

RESUMEN

MTH1 hydrolyzes oxidized nucleotide triphosphates, thereby preventing them from being incorporated into DNA. We here present the structures of human MTH1 (1.9Å) and its complex with the product 8-oxo-dGMP (1.8Å). Unexpectedly MTH1 binds the nucleotide in the anti conformation with no direct interaction between the 8-oxo group and the protein. We suggest that the specificity depends on the stabilization of an enol tautomer of the 8-oxo form of dGTP. The binding of the product induces no major structural changes. The structures reveal the mode of nucleotide binding in MTH1 and provide the structural basis for inhibitor design.


Asunto(s)
Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Guanosina Monofosfato/análogos & derivados , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Cristalografía por Rayos X , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Nucleótidos de Desoxiguanina/química , Nucleótidos de Desoxiguanina/metabolismo , Diseño de Fármacos , Guanosina Monofosfato/química , Guanosina Monofosfato/metabolismo , Humanos , Enlace de Hidrógeno , Ratones , Modelos Moleculares , Oxidación-Reducción , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...