Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Reprod Toxicol ; : 108662, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986849

RESUMEN

The Adverse Outcome Pathway (AOP) framework has gained widespread acceptance in toxicological disciplines as a tool for aiding chemical hazard assessment. Despite increased activity in AOP development, progress towards a high volume of fully endorsed AOPs has been slow, partly due to the challenging task of constructing complete AOPs according to the AOP Developer's Handbook. To facilitate greater uptake of new knowledge units onto the open-source AOP-wiki platform, a pragmatic approach was recently proposed. This approach involves considering Key Event Relationships (KERs) for individual development through systematic approaches, as they represent essential units of knowledge from which causality can be inferred from low complexity test data adverse outcomes in intact organisms. However, more broadly adopted harmonized methodologies for KER development would be desirable. Using the AOP Developer's Handbook as a guide, a KER linking 'decreased androgen receptor (AR) activity' with 'reduced anogenital distance (AGD)' was developed to demonstrate a methodology applicable for future developments of KERs requiring systematic literature retrieval approaches.

2.
Biochem Biophys Rep ; 38: 101742, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38873224

RESUMEN

The estrogen-synthesizing enzyme aromatase is expressed in adipose tissue where it controls the local concentration of estrogen. It has been suggested that the organic solvents ethanol and ethylene glycol can induce estrogen synthesis by inhibiting PPARγ activity. Since elevated estrogen synthesis in adipose tissue is a risk factor for breast cancer development, it is of interest to further characterize the mechanisms regulating aromatase expression. Here, we explored the mechanisms by which ethanol and ethylene glycol modulate aromatase mRNA expression and the ultimate conversion of androgens into estrogens. NMR spectroscopy revealed that ethanol and ethylene glycol influence the active state of PPARγ. An inhibitory effect on PPARγ was confirmed by adipogenesis assays and PPARγ target gene expression analysis in adipocytes. However, only ethanol increased aromatase mRNA in differentiated human adipocytes. In contrast, ethylene glycol downregulated aromatase in a PPARγ-independent manner. An animal study using female Wistar rats was conducted to assess the acute effects of ethanol and ethylene glycol on aromatase expression in adipose tissue within a physiological context. No changes in aromatase or PPARγ target gene (Adipoq and Fabp4) levels were observed in adipose tissue or ovary in response to the chemical exposures, suggesting an absence of acute PPARγ-mediated effects in these organs. The results suggest that ethanol and ethylene glycol are weak PPARγ antagonists in mouse and human adipocytes as well as in cell-free NMR spectroscopy. Both compounds seem to affect adipocyte aromatase expression in vitro, where ethanol increased aromatase expression PPARγ-dependently and ethylene glycol decreased aromatase expression independently of PPARγ. No acute effects on aromatase expression or PPARγ activity were observed in adipose tissue or ovary in rats in this study design.

3.
Open Res Eur ; 4: 68, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38883262

RESUMEN

The prevalence of hormone-related health issues caused by exposure to endocrine disrupting chemicals (EDCs) is a significant, and increasing, societal challenge. Declining fertility rates together with rising incidence rates of reproductive disorders and other endocrine-related diseases underscores the urgency in taking more action. Addressing the growing threat of EDCs in our environment demands robust and reliable test methods to assess a broad variety of endpoints relevant for endocrine disruption. EDCs also require effective regulatory frameworks, especially as the current move towards greater reliance on non-animal methods in chemical testing puts to test the current paradigm for EDC identification, which requires that an adverse effect is observed in an intact organism. Although great advances have been made in the field of predictive toxicology, disruption to the endocrine system and subsequent adverse health effects may prove particularly difficult to predict without traditional animal models. The MERLON project seeks to expedite progress by integrating multispecies molecular research, new approach methodologies (NAMs), human clinical epidemiology, and systems biology to furnish mechanistic insights and explore ways forward for NAM-based identification of EDCs. The focus is on sexual development and function, from foetal sex differentiation of the reproductive system through mini-puberty and puberty to sexual maturity. The project aims are geared towards closing existing knowledge gaps in understanding the effects of EDCs on human health to ultimately support effective regulation of EDCs in the European Union and beyond.

4.
Front Toxicol ; 6: 1357717, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601197

RESUMEN

Introduction: Adverse Outcome Pathways (AOPs) can support both testing and assessment of endocrine disruptors (EDs). There is, however, a need for further development of the AOP framework to improve its applicability in a regulatory context. Here we have inventoried the AOP-wiki to identify all existing AOPs related to mammalian reproductive toxicity arising from disruption to the estrogen, androgen, and steroidogenesis modalities. Core key events (KEs) shared between relevant AOPs were also identified to aid in further AOP network (AOPN) development. Methods: A systematic approach using two different methods was applied to screen and search the entire AOP-wiki library. An AOPN was visualized using Cytoscape. Manual refinement was performed to remove AOPS devoid of any KEs and/or KERs. Results: Fifty-eight AOPs relevant for mammalian reproductive toxicity were originally identified, with 42 AOPs included in the final AOPN. Several of the KEs and KE relationships (KERs) described similar events and were thus merged to optimize AOPN construction. Sixteen sub-networks related to effects on hormone levels or hormone activity, cancer outcomes, male and female reproductive systems, and overall effects on fertility and reproduction were identified within the AOPN. Twenty-six KEs and 11 KERs were identified as core blocks of knowledge in the AOPN, of which 19 core KEs are already included as parameters in current OECD and US EPA test guidelines. Discussion: The AOPN highlights knowledge gaps that can be targeted for further development of a more complete AOPN that can support the identification and assessment of EDs.

5.
Toxicology ; 505: 153815, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685446

RESUMEN

Phthalates are found in everyday items like plastics and personal care products. There is an increasing concern that continuous exposure can adversely affect female fertility. However, experimental data are lacking to establish causal links between exposure and disease in humans. To address this gap, we tested the effects of a common phthalate metabolite, mono-(2-ethylhexyl) phthalate (MEHP), on adult human ovaries in vitro using an epidemiologically determined human-relevant concentration range (2.05 nM - 20.51 mM). Histomorphological assessments, steroid and cytokine measurements were performed on human ovarian tissue exposed to MEHP for 7 days in vitro. Cell viability and gene expression profile were investigated following 7 days of MEHP exposure using the human granulosa cancer cell lines KGN, and COV434, the germline tumor cell line PA-1, and human ovarian primary cells. Selected differentially expressed genes (DEGs) were validated by RT-qPCR and immunofluorescence in human ovarian tissue. MEHP exposure reduced follicular growth (20.51 nM) and increased follicular degeneration (20.51 mM) in ovarian tissue, while not affecting steroid and cytokine production. Out of the 691 unique DEGs identified across all the cell types and concentrations, CSRP2 involved in cytoskeleton organization and YWHAE as well as CTNNB1 involved in the Hippo pathway, were chosen for further validation. CSRP2 was upregulated and CTNNB1 downregulated in both ovarian tissue and cells, whereas YWHAE was downregulated in cells only. In summary, one-week MEHP exposure of human ovarian tissue can perturb the development and survival of human follicles through mechanisms likely involving dysregulation of cytoskeleton organization and Hippo pathway.


Asunto(s)
Supervivencia Celular , Dietilhexil Ftalato , Folículo Ovárico , Humanos , Femenino , Supervivencia Celular/efectos de los fármacos , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/metabolismo , Folículo Ovárico/patología , Dietilhexil Ftalato/análogos & derivados , Dietilhexil Ftalato/toxicidad , Adulto , Línea Celular Tumoral , Citocinas/metabolismo , Citocinas/genética
6.
Toxicology ; 505: 153822, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685447

RESUMEN

Thyroid hormone (TH) system disrupting compounds can impair brain development by perturbing TH action during critical life stages. Human exposure to TH system disrupting chemicals is therefore of great concern. To better protect humans against such chemicals, sensitive test methods that can detect effects on the developing brain are critical. Worryingly, however, current test methods are not sensitive and specific towards TH-mediated effects. To address this shortcoming, we performed RNA-sequencing of rat brains developmentally exposed to two different thyroperoxidase (TPO) inhibiting compounds, the medical drug methimazole (MMI) or the pesticide amitrole. Pregnant and lactating rats were exposed to 8 and 16 mg/kg/day(d) MMI or 25 and 50 mg/kg/d amitrole from gestational day 7 until postnatal day 16. Bulk-RNA-seq was performed on hippocampus from the 16-day old male pups. MMI and amitrole caused pronounced changes to the transcriptomes; 816 genes were differentially expressed, and 425 gene transcripts were similarly affected by both chemicals. Functional terms indicate effects from key cellular functions to changes in cell development, migration and differentiation of several cell populations. Of the total number of DEGs, 106 appeared to form a consistent transcriptional fingerprint of developmental hypothyroidism as they were similarly and dose-dependently expressed across all treatment groups. Using a filtering system, we identified 20 genes that appeared to represent the most sensitive, robust and dose-dependent markers of altered TH-mediated brain development. These markers provide inputs to the adverse outcome pathway (AOP) framework where they, in the context of linking TPO inhibiting compounds to adverse cognitive function, can be used to assess altered gene expression in the hippocampus in rat toxicity studies.


Asunto(s)
Hipocampo , Metimazol , Animales , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Metimazol/toxicidad , Embarazo , Ratas , Yoduro Peroxidasa/genética , Transcriptoma/efectos de los fármacos , Antitiroideos/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Inhibidores Enzimáticos/toxicidad , Inhibidores Enzimáticos/farmacología
7.
Toxicol Appl Pharmacol ; 484: 116843, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331103

RESUMEN

The production of chlorinated paraffins (CPs) has risen in the past two decades due to their versatile industrial applications. Consequently, CPs are now widely detected in human food sources, the environment, and in human matrices such as serum, the placenta and breast milk. This raises concern about prenatal and postnatal exposure. While some studies suggest that certain short-chained CPs (SCCPs) may have endocrine disrupting properties, knowledge about potential endocrine disrupting potential of medium- (MCCP) and long-chained CPs (LCCPs) remains relativity sparse. Here, we used a panel of in vitro assays to investigate seven pure CPs and two technical mixtures of CPs. These varied in chain length and, chlorination degree. The in vitro panel covered androgen, estrogen, and retinoic acid receptor activities, transthyretin displacement, and steroidogenesis. One of the SCCPs inhibited androgen receptor (AR) activity. All SCCPs induced estrogen receptor (ER) activity. Some SCCPs and MCCPs increased 17ß-estradiol levels in the steroidogenesis assay, though not consistently across all substances in these groups. SCCPs exhibited the most pronounced effects in multiple in vitro assays, while the tested LCCPs showed no effects. Based on our results, some CPs can have endocrine disrupting potential in vitro. These findings warrant further examinations to ensure that CPs do not cause issues in intact organisms, including humans.


Asunto(s)
Hidrocarburos Clorados , Parafina , Humanos , Parafina/toxicidad , Parafina/análisis , Hidrocarburos Clorados/toxicidad , Hidrocarburos Clorados/análisis , Monitoreo del Ambiente/métodos , Estrógenos , China
8.
Biochem Pharmacol ; 222: 116095, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423186

RESUMEN

Aromatase is the rate-limiting enzyme in the biosynthesis of estrogens and a key risk factor for hormone receptor-positive breast cancer. In postmenopausal women, estrogens synthesized in adipose tissue promotes the growth of estrogen receptor positive breast cancers. Activation of peroxisome proliferator-activated receptor gamma (PPARγ) in adipose stromal cells (ASCs) leads to decreased expression of aromatase and differentiation of ASCs into adipocytes. Environmental chemicals can act as antagonists of PPARγ and disrupt its function. This study aimed to test the hypothesis that PPARγ antagonists can promote breast cancer by stimulating aromatase expression in human adipose tissue. Primary cells and explants from human adipose tissue as well as A41hWAT, C3H10T1/2, and H295R cell lines were used to investigate PPARγ antagonist-stimulated effects on adipogenesis, aromatase expression, and estrogen biosynthesis. Selected antagonists inhibited adipocyte differentiation, preventing the adipogenesis-associated downregulation of aromatase. NMR spectroscopy confirmed direct interaction between the potent antagonist DEHPA and PPARγ, inhibiting agonist binding. Short-term exposure of ASCs to PPARγ antagonists upregulated aromatase only in differentiated cells, and a similar effect could be observed in human breast adipose tissue explants. Overexpression of PPARG with or without agonist treatment reduced aromatase expression in ASCs. The data suggest that environmental PPARγ antagonists regulate aromatase expression in adipose tissue through two mechanisms. The first is indirect and involves inhibition of adipogenesis, while the second occurs more acutely.


Asunto(s)
Neoplasias de la Mama , PPAR gamma , Femenino , Humanos , PPAR gamma/genética , PPAR gamma/metabolismo , Aromatasa/genética , Aromatasa/metabolismo , Tejido Adiposo/metabolismo , Estrógenos/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Adipogénesis
9.
Curr Res Toxicol ; 6: 100154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38352163

RESUMEN

Perfluorooctanesulfonic acid (PFOS) can disrupt the thyroid hormone (TH) system in rodents, potentially affecting perinatal growth and neurodevelopment. Some studies also suggest that gestational exposure to PFOS can lead to lower TH levels throughout life, indicating that PFOS may compromise thyroid gland development. To address this question, we utilized a rat thyroid gland ex vivo culture system to study direct effects of PFOS on the developing thyroid. No significant changes to follicular structure or size were observed with 1 µM or 10 µM PFOS exposure. However, the transcription factor Foxe1, together with Tpo and Lrp2, were upregulated, whereas the key transcription factor Pax8 and its downstream target gene Cdh16 were significantly downregulated at the transcript level, observed with both RT-qPCR and RNAscope. Notably, Cdh16 expression was not uniformly downregulated across Cdh16-postive cells, but instead displayed a patchy expression pattern across the thyroid gland. This is a significant change in expression pattern compared to control thyroids where Cdh16 is expressed relatively uniformly. The disrupted expression pattern was also seen at the protein level. This suggests that PFOS exposure can impact follicular growth and structure. Compromised follicle integrity, if irreversible, could help explain reduced TH synthesis postnatally. This view is supported by observed changes to Tpo and Lrp2 expression, two factors that play a role in TH synthesis.

10.
Front Endocrinol (Lausanne) ; 14: 1126485, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854179

RESUMEN

A prevailing challenge when testing chemicals for their potential to cause female reproductive toxicity is the lack of appropriate toxicological test methods. We hypothesized that starting a 28-day in vivo toxicity study already at weaning, instead of in adulthood, would increase the sensitivity to detect endocrine disruptors due to the possibility of including assessment of pubertal onset. We compared the sensitivity of two rat studies using pubertal or adult exposure. We exposed the rats to two well-known human endocrine disruptors, the estrogen diethylstilbestrol (DES; 0.003, 0.012, 0.048 mg/kg bw/day) and the steroid synthesis inhibitor ketoconazole (KTZ; 3, 12, 48 mg/kg bw/day). Specifically, we addressed the impact on established endocrine-sensitive endpoints including day of vaginal opening (VO), estrous cyclicity, weights of reproductive organs and ovarian histology. After 28 days of exposure, starting either at weaning or at 9 weeks of age, DES exposure altered estrous cyclicity, reduced ovary weight as well as number of antral follicles and corpora lutea. By starting exposure at weaning, we could detect advanced day of VO in DES-exposed animals despite a lower body weight. Some endpoints were affected mainly with adult exposure, as DES increased liver weights in adulthood only. For KTZ, no effects were seen on time of VO, but adrenal and liver weights were increased in both exposure scenarios, and adult KTZ exposure also stimulated ovarian follicle growth. At first glance, this would indicate that a pubertal exposure scenario would be preferrable as timing of VO may serve as sensitive indicator of endocrine disruption by estrogenic mode of action. However, a higher sensitivity for other endocrine targets may be seen starting exposure in adulthood. Overall, starting a 28-day study at weaning with inclusion of VO assessment would mainly be recommended for substances showing estrogenic potential e.g., in vitro, whereas for other substances an adult exposure scenario may be recommended.


Asunto(s)
Disruptores Endocrinos , Estrógenos no Esteroides , Humanos , Ratas , Animales , Femenino , Disruptores Endocrinos/toxicidad , Ratas Sprague-Dawley , Reproducción , Dietilestilbestrol/toxicidad
11.
Front Toxicol ; 5: 1216369, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37538785

RESUMEN

New approach methodologies (NAMs) have the potential to become a major component of regulatory risk assessment, however, their actual implementation is challenging. The European Partnership for the Assessment of Risks from Chemicals (PARC) was designed to address many of the challenges that exist for the development and implementation of NAMs in modern chemical risk assessment. PARC's proximity to national and European regulatory agencies is envisioned to ensure that all the research and innovation projects that are initiated within PARC agree with actual regulatory needs. One of the main aims of PARC is to develop innovative methodologies that will directly aid chemical hazard identification, risk assessment, and regulation/policy. This will facilitate the development of NAMs for use in risk assessment, as well as the transition from an endpoint-based animal testing strategy to a more mechanistic-based NAMs testing strategy, as foreseen by the Tox21 and the EU Chemical's Strategy for Sustainability. This work falls under work package 5 (WP5) of the PARC initiative. There are three different tasks within WP5, and this paper is a general overview of the five main projects in the Task 5.2 'Innovative Tools and methods for Toxicity Testing,' with a focus on Human Health. This task will bridge essential regulatory data gaps pertaining to the assessment of toxicological prioritized endpoints such as non-genotoxic carcinogenicity, immunotoxicity, endocrine disruption (mainly thyroid), metabolic disruption, and (developmental and adult) neurotoxicity, thereby leveraging OECD's and PARC's AOP frameworks. This is intended to provide regulatory risk assessors and industry stakeholders with relevant, affordable and reliable assessment tools that will ultimately contribute to the application of next-generation risk assessment (NGRA) in Europe and worldwide.

12.
Environ Pollut ; 334: 122179, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37454717

RESUMEN

Perfluorooctane sulfonic acid (PFOS) is a manmade legacy compound belonging to the group of persistent per- and polyfluorinated substances (PFAS). While many adverse health effects of PFOS have been identified, knowledge about its effect on the intestinal microbiota is scarce. The microbial community inhabiting the gut of mammals plays an important role in health, for instance by affecting the uptake, excretion, and bioavailability of some xenobiotic toxicants. Here, we investigated (i) the effect of vancomycin-mediated microbiota modulation on the uptake of PFOS in adult Sprague-Dawley rats, and (ii) the effects of PFOS exposure on the rat microbiota composition. Four groups of twelve rats were exposed daily for 7 days with either 3 mg/kg PFOS plus 8 mg/kg vancomycin, only PFOS, only vancomycin, or a corn oil control. Vancomycin-induced modulation of the gut microbiota composition did not affect uptake of branched and linear PFOS over a period of 7 days, measured in serum samples. 16S rRNA amplicon sequencing of faecal and intestinal samples revealed that vancomycin treatment lowered microbial alpha-diversity, while PFOS increased the microbial diversity in vancomycin-treated as well as in non-antibiotic treated animals, possibly because an observed decrease in the Enterobacteriaceae abundance allows other microbial species to propagate. Colonic short-chain fatty acids were significantly lower in vancomycin-treated animals but remained unaffected by PFOS. Our results suggest that PFOS exposure may disturb the intestinal microbiota, but that antibiotic-induced modulation of the intestinal ecosystem does not affect systemic uptake of PFOS in rats.


Asunto(s)
Fluorocarburos , Microbioma Gastrointestinal , Microbiota , Ratas , Animales , Antibacterianos/toxicidad , Vancomicina/toxicidad , ARN Ribosómico 16S/genética , Ratas Sprague-Dawley , Fluorocarburos/toxicidad , Mamíferos/genética
13.
Regul Toxicol Pharmacol ; 142: 105445, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37414127

RESUMEN

In rats, hypothyroidism during fetal and neonatal development can disrupt neuronal migration and induce the formation of periventricular heterotopia in the brain. However, it remains uncertain if heterotopia also manifest in mice after developmental hypothyroidism and whether they could be used as a toxicological endpoint to detect TH-mediated effects caused by TH system disrupting chemicals. Here, we performed a mouse study where we induced severe hypothyroidism by exposing pregnant mice (n = 3) to a very high dose of propylthiouracil (PTU) (1500 ppm) in the diet. This, to obtain best chances of detecting heterotopia. We found what appears to be very small heterotopia in 4 out of the 8 PTU-exposed pups. Although the incidence rate could suggest some utility for this endpoint, the small size of the ectopic neuronal clusters at maximum hypothyroidism excludes the utility of heterotopia in mouse toxicity studies aimed to detect TH system disrupting chemicals. On the other hand, parvalbumin expression was manifestly lower in the cortex of hypothyroid mouse offspring demonstrating that offspring TH-deficiency caused an effect on the developing brain. Based on overall results, we conclude that heterotopia formation in mice is not a useful toxicological endpoint for examining TH-mediated developmental neurotoxicity.


Asunto(s)
Hipotiroidismo , Heterotopia Nodular Periventricular , Efectos Tardíos de la Exposición Prenatal , Embarazo , Femenino , Humanos , Animales , Ratas , Ratones , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Exposición Materna , Hormonas Tiroideas/metabolismo , Hipotiroidismo/inducido químicamente , Hipotiroidismo/metabolismo , Propiltiouracilo/toxicidad
14.
Reprod Toxicol ; 119: 108416, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37268149

RESUMEN

Female reproductive toxicity assessments rely on histological evaluation of ovaries by hematoxylin & eosin (H&E)-stained cross-sections. This is time-consuming, labor-intensive and costly, thus alternative methods for ovarian toxicity assessment could be valuable. Here, we report on an improved method based on quantification of antral follicles (AF) and corpora lutea (CL) using ovarian surface photographs, called 'surface photo counting' (SPC). To validate a potential utility for the method to detect effects on folliculogenesis in toxicity studies, we investigated ovaries from rats exposed to two well-known endocrine disrupting chemicals (EDCs), diethylstilbestrol (DES) and ketoconazole (KTZ). Animals were exposed to DES (0.003, 0.012, 0.048 mg/kg body weight (bw)/day) or KTZ (3, 12, 48 mg/kg bw/day) during puberty or adulthood. At the end of the exposure, ovaries were photographed under stereomicroscope and subsequently processed for histological assessments to allow for direct comparison between the two methods by quantifying AF and CL. There was a significant correlation between the SPC and histology methods, albeit CL counts correlated better than AF counts, potentially due to their larger size. Effects of DES and KTZ were found by both methods, suggesting applicability of the SPC method to chemical hazard and risk assessment. Based on our study, we propose that SPC can be employed as a fast and cheap tool for assessment of ovarian toxicity in in vivo studies to prioritize chemical exposure groups for further histological assessment.


Asunto(s)
Ovario , Maduración Sexual , Ratas , Animales , Femenino , Ovulación , Cuerpo Lúteo , Folículo Ovárico
15.
Front Toxicol ; 5: 1189303, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37265663

RESUMEN

Current test strategies to identify thyroid hormone (TH) system disruptors are inadequate for conducting robust chemical risk assessment required for regulation. The tests rely heavily on histopathological changes in rodent thyroid glands or measuring changes in systemic TH levels, but they lack specific new approach methodologies (NAMs) that can adequately detect TH-mediated effects. Such alternative test methods are needed to infer a causal relationship between molecular initiating events and adverse outcomes such as perturbed brain development. Although some NAMs that are relevant for TH system disruption are available-and are currently in the process of regulatory validation-there is still a need to develop more extensive alternative test batteries to cover the range of potential key events along the causal pathway between initial chemical disruption and adverse outcomes in humans. This project, funded under the Partnership for the Assessment of Risk from Chemicals (PARC) initiative, aims to facilitate the development of NAMs that are specific for TH system disruption by characterizing in vivo mechanisms of action that can be targeted by in embryo/in vitro/in silico/in chemico testing strategies. We will develop and improve human-relevant in vitro test systems to capture effects on important areas of the TH system. Furthermore, we will elaborate on important species differences in TH system disruption by incorporating non-mammalian vertebrate test species alongside classical laboratory rat species and human-derived in vitro assays.

16.
Front Endocrinol (Lausanne) ; 14: 1140886, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077353

RESUMEN

Introduction: Estrogenic endocrine disrupting chemicals (EDCs) such as diethylstilbestrol (DES) are known to alter the timing of puberty onset and reproductive function in females. Accumulating evidence suggests that steroid synthesis inhibitors such as ketoconazole (KTZ) or phthalates may also affect female reproductive health, however their mode of action is poorly understood. Because hypothalamic activity is very sensitive to sex steroids, we aimed at determining whether and how EDCs with different mode of action can alter the hypothalamic transcriptome and GnRH release in female rats. Design: Female rats were exposed to KTZ or DES during perinatal (DES 3-6-12µg/kg.d; KTZ 3-6-12mg/kg.d), pubertal or adult periods (DES 3-12-48µg/kg.d; KTZ 3-12-48mg/kg.d). Results: Ex vivo study of GnRH pulsatility revealed that perinatal exposure to the highest doses of KTZ and DES delayed maturation of GnRH secretion before puberty, whereas pubertal or adult exposure had no effect on GnRH pulsatility. Hypothalamic transcriptome, studied by RNAsequencing in the preoptic area and in the mediobasal hypothalamus, was found to be very sensitive to perinatal exposure to all doses of KTZ before puberty with effects persisting until adulthood. Bioinformatic analysis with Ingenuity Pathway Analysis predicted "Creb signaling in Neurons" and "IGF-1 signaling" among the most downregulated pathways by all doses of KTZ and DES before puberty, and "PPARg" as a common upstream regulator driving gene expression changes. Deeper screening ofRNAseq datasets indicated that a high number of genes regulating the activity of the extrinsic GnRH pulse generator were consistently affected by all the doses of DES and KTZ before puberty. Several, including MKRN3, DNMT3 or Cbx7, showed similar alterations in expression at adulthood. Conclusion: nRH secretion and the hypothalamic transcriptome are highly sensitive to perinatal exposure to both DES and KTZ. The identified pathways should be exploredfurther to identify biomarkers for future testing strategies for EDC identification and when enhancing the current standard information requirements in regulation.


Asunto(s)
Fungicidas Industriales , Embarazo , Ratas , Animales , Femenino , Fungicidas Industriales/metabolismo , Fungicidas Industriales/farmacología , Cetoconazol/farmacología , Maduración Sexual/fisiología , Hipotálamo/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo
17.
Arch Toxicol ; 97(3): 849-863, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36653537

RESUMEN

Exposure to endocrine-disrupting chemicals (EDCs) during development may cause reproductive disorders in women. Although female reproductive endpoints are assessed in rodent toxicity studies, a concern is that typical endpoints are not sensitive enough to detect chemicals of concern to human health. If so, measured endpoints must be improved or new biomarkers of effects included. Herein, we have characterized the dynamic transcriptional landscape of developing rat ovaries exposed to two well-known EDCs, diethylstilbestrol (DES) and ketoconazole (KTZ), by 3' RNA sequencing. Rats were orally exposed from day 7 of gestation until birth, and from postnatal day 1 until days 6, 14 or 22. Three exposure doses for each chemical were used: 3, 6 and 12 µg/kg bw/day of DES; 3, 6, 12 mg/kg bw/day of KTZ. The transcriptome changed dynamically during perinatal development in control ovaries, with 1137 differentially expressed genes (DEGs) partitioned into 3 broad expression patterns. A cross-species deconvolution strategy based on a mouse ovary developmental cell atlas was used to map any changes to ovarian cellularity across the perinatal period to allow for characterization of actual changes to gene transcript levels. A total of 184 DEGs were observed across dose groups and developmental stages in DES-exposed ovaries, and 111 DEGs in KTZ-exposed ovaries across dose groups and developmental stages. Based on our analyses, we have identified new candidate biomarkers for female reproductive toxicity induced by EDC, including Kcne2, Calb2 and Insl3.


Asunto(s)
Disruptores Endocrinos , Canales de Potasio con Entrada de Voltaje , Humanos , Embarazo , Ratones , Femenino , Ratas , Animales , Dietilestilbestrol/toxicidad , Ovario , Disruptores Endocrinos/toxicidad , Cetoconazol , Reproducción , Canales de Potasio con Entrada de Voltaje/farmacología
18.
Horm Res Paediatr ; 96(2): 190-206, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34607330

RESUMEN

BACKGROUND: Male reproductive development in mammals can be divided into a gonadal formation phase followed by a hormone-driven differentiation phase. Failure of these processes may result in Differences in Sex Development (DSD), which may include abnormalities of the male reproductive tract, including cryptorchidism, hypospadias, infertility, and testicular germ cell cancer (TGCC). These disorders are also considered to be part of a testicular dysgenesis syndrome (TDS) in males. Whilst DSDs are considered to result primarily from genetic abnormalities, the development of TDS disorders is frequently associated with environmental factors. SUMMARY: In this review, we will discuss the development of the male reproductive system in relation to DSD and TDS. We will also describe the experimental systems, including studies involving animals and human tissues or cells that can be used to investigate the role of environmental factors in inducing male reproductive disorders. We will discuss recent studies investigating the impact of environmental chemicals (e.g., phthalates and bisphenols), lifestyle factors (e.g., smoking) and pharmaceuticals (e.g., analgesics) on foetal testis development. Finally, we will describe the evidence, involving experimental and epidemiologic approaches, for a role of environmental factors in the development of specific male reproductive disorders, including cryptorchidism, hypospadias, and TGCC. KEY MESSAGES: Environmental exposures can impact the development and function of the male reproductive system in humans. Epidemiology studies and experimental approaches using human tissues are important to translate findings from animal studies and account for species differences in response to environmental exposures.


Asunto(s)
Criptorquidismo , Disgenesia Gonadal , Hipospadias , Animales , Humanos , Masculino , Criptorquidismo/etiología , Criptorquidismo/epidemiología , Hipospadias/etiología , Disgenesia Gonadal/epidemiología , Disgenesia Gonadal/genética , Ambiente , Modelos Teóricos , Mamíferos
20.
Toxicol Lett ; 373: 114-122, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36410587

RESUMEN

Inhibition of androgen signaling during critical stages of ovary development can disrupt folliculogenesis with potential consequences for reproductive function later in life. Many environmental chemicals can inhibit the androgen signaling pathway, which raises the question if developmental exposure to anti-androgenic chemicals can negatively impact female fertility. Here, we report on altered reproductive hormone profiles in prepubertal female rats following developmental exposure to three pesticides with anti-androgenic potential: linuron (25 and 50 mg/kg bw/d), dimethomorph (60 and 180 mg/kg bw/d) and imazalil (8 and 24 mg/kg bw/d). Dams were orally exposed from gestational day 7 (dimethomorph and imazalil) or 13 (linuron) until birth, then until end of dosing at early postnatal life. Linuron and dimethomorph induced dose-related reductions to plasma corticosterone levels, whereas imazalil mainly suppressed gonadotropin levels. In the ovaries, expression levels of target genes were affected by linuron and dimethomorph, suggesting impaired follicle growth. Based on our results, we propose that anti-androgenic chemicals can negatively impact female reproductive development. This highlights a need to integrate data from all levels of the hypothalamic-pituitary-gonadal axis, as well as the hypothalamic-pituitary-adrenal axis, when investigating the potential impact of endocrine disruptors on female reproductive development and function.


Asunto(s)
Linurona , Plaguicidas , Femenino , Animales , Ratas , Linurona/toxicidad , Plaguicidas/toxicidad , Ovario , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Antagonistas de Andrógenos/toxicidad , Hormonas , Esteroides , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...