Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(1)2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38201309

RESUMEN

The formation of specific cellular protrusions, plasma membrane blebs, underlies the amoeboid mode of cell motility, which is characteristic for free-living amoebae and leukocytes, and can also be adopted by stem and tumor cells to bypass unfavorable migration conditions and thus facilitate their long-distance migration. Not all cells are equally prone to bleb formation. We have previously shown that membrane blebbing can be experimentally induced in a subset of HT1080 fibrosarcoma cells, whereas other cells in the same culture under the same conditions retain non-blebbing mesenchymal morphology. Here we show that this heterogeneity is associated with the distribution of vimentin intermediate filaments (VIFs). Using different approaches to alter the VIF organization, we show that blebbing activity is biased toward cell edges lacking abundant VIFs, whereas the VIF-rich regions of the cell periphery exhibit low blebbing activity. This pattern is observed both in interphase fibroblasts, with and without experimentally induced blebbing, and during mitosis-associated blebbing. Moreover, the downregulation of vimentin expression or displacement of VIFs away from the cell periphery promotes blebbing even in cells resistant to bleb-inducing treatments. Thus, we reveal a new important function of VIFs in cell physiology that involves the regulation of non-apoptotic blebbing essential for amoeboid cell migration and mitosis.


Asunto(s)
Filamentos Intermedios , Vimentina , Movimiento Celular , Citoplasma , Membrana Celular
2.
Nat Commun ; 14(1): 6883, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898620

RESUMEN

Exosomes are secreted to the extracellular milieu when multivesicular endosomes (MVEs) dock and fuse with the plasma membrane. However, MVEs are also known to fuse with lysosomes for degradation. How MVEs are directed to the plasma membrane for exosome secretion rather than to lysosomes is unclear. Here we report that a conversion of phosphatidylinositol-3-phosphate (PI(3)P) to phosphatidylinositol-4-phosphate (PI(4)P) catalyzed sequentially by Myotubularin 1 (MTM1) and phosphatidylinositol 4-kinase type IIα (PI4KIIα) on the surface of MVEs mediates the recruitment of the exocyst complex. The exocyst then targets the MVEs to the plasma membrane for exosome secretion. We further demonstrate that disrupting PI(4)P generation or exocyst function blocked exosomal secretion of Programmed death-ligand 1 (PD-L1), a key immune checkpoint protein in tumor cells, and led to its accumulation in lysosomes. Together, our study suggests that the PI(3)P to PI(4)P conversion on MVEs and the recruitment of the exocyst direct the exocytic trafficking of MVEs for exosome secretion.


Asunto(s)
Exosomas , Exosomas/metabolismo , Endosomas/metabolismo , Fosfatidilinositoles/metabolismo , Cuerpos Multivesiculares/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(50): e2202803119, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36475946

RESUMEN

Cellular morphogenesis and processes such as cell division and migration require the coordination of the microtubule and actin cytoskeletons. Microtubule-actin crosstalk is poorly understood and largely regarded as the capture and regulation of microtubules by actin. Septins are filamentous guanosine-5'-triphosphate (GTP) binding proteins, which comprise the fourth component of the cytoskeleton along microtubules, actin, and intermediate filaments. Here, we report that septins mediate microtubule-actin crosstalk by coupling actin polymerization to microtubule lattices. Superresolution and platinum replica electron microscopy (PREM) show that septins localize to overlapping microtubules and actin filaments in the growth cones of neurons and non-neuronal cells. We demonstrate that recombinant septin complexes directly crosslink microtubules and actin filaments into hybrid bundles. In vitro reconstitution assays reveal that microtubule-bound septins capture and align stable actin filaments with microtubules. Strikingly, septins enable the capture and polymerization of growing actin filaments on microtubule lattices. In neuronal growth cones, septins are required for the maintenance of the peripheral actin network that fans out from microtubules. These findings show that septins directly mediate microtubule interactions with actin filaments, and reveal a mechanism of microtubule-templated actin growth with broader significance for the self-organization of the cytoskeleton and cellular morphogenesis.


Asunto(s)
Actinas , Septinas , Microtúbulos
4.
Nat Commun ; 13(1): 7089, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402771

RESUMEN

The formation and recovery of gaps in the vascular endothelium governs a wide range of physiological and pathological phenomena, from angiogenesis to tumor cell extravasation. However, the interplay between the mechanical and signaling processes that drive dynamic behavior in vascular endothelial cells is not well understood. In this study, we propose a chemo-mechanical model to investigate the regulation of endothelial junctions as dependent on the feedback between actomyosin contractility, VE-cadherin bond turnover, and actin polymerization, which mediate the forces exerted on the cell-cell interface. Simulations reveal that active cell tension can stabilize cadherin bonds, but excessive RhoA signaling can drive bond dissociation and junction failure. While actin polymerization aids gap closure, high levels of Rac1 can induce junction weakening. Combining the modeling framework with experiments, our model predicts the influence of pharmacological treatments on the junction state and identifies that a critical balance between RhoA and Rac1 expression is required to maintain junction stability. Our proposed framework can help guide the development of therapeutics that target the Rho family of GTPases and downstream active mechanical processes.


Asunto(s)
Actinas , Células Endoteliales , Células Endoteliales/metabolismo , Actinas/metabolismo , Retroalimentación , Transducción de Señal , Citoesqueleto de Actina/metabolismo
5.
Nat Commun ; 13(1): 6037, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229429

RESUMEN

During early ischemic brain injury, glutamate receptor hyperactivation mediates neuronal death via osmotic cell swelling. Here we show that ischemia and excess NMDA receptor activation cause actin to rapidly and extensively reorganize within the somatodendritic compartment. Normally, F-actin is concentrated within dendritic spines. However, <5 min after bath-applied NMDA, F-actin depolymerizes within spines and polymerizes into stable filaments within the dendrite shaft and soma. A similar actinification occurs after experimental ischemia in culture, and photothrombotic stroke in mouse. Following transient NMDA incubation, actinification spontaneously reverses. Na+, Cl-, water, and Ca2+ influx, and spine F-actin depolymerization are all necessary, but not individually sufficient, for actinification, but combined they induce activation of the F-actin polymerization factor inverted formin-2 (INF2). Silencing of INF2 renders neurons vulnerable to cell death and INF2 overexpression is protective. Ischemia-induced dendritic actin reorganization is therefore an intrinsic pro-survival response that protects neurons from death induced by cell edema.


Asunto(s)
Actinas , N-Metilaspartato , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Espinas Dendríticas/metabolismo , Forminas , Isquemia/metabolismo , Ratones , N-Metilaspartato/metabolismo , Neuronas/metabolismo , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Agua/metabolismo
6.
Nat Commun ; 13(1): 6127, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253374

RESUMEN

Clathrin-mediated endocytosis (CME) requires energy input from actin polymerization in mechanically challenging conditions. The roles of actin in CME are poorly understood due to inadequate knowledge of actin organization at clathrin-coated structures (CCSs). Using platinum replica electron microscopy of mammalian cells, we show that Arp2/3 complex-dependent branched actin networks, which often emerge from microtubule tips, assemble along the CCS perimeter, lack interaction with the apical clathrin lattice, and have barbed ends oriented toward the CCS. This structure is hardly compatible with the widely held "apical pulling" model describing actin functions in CME. Arp2/3 complex inhibition or epsin knockout produce large flat non-dynamic CCSs, which split into invaginating subdomains upon recovery from Arp2/3 inhibition. Moreover, epsin localization to CCSs depends on Arp2/3 activity. We propose an "edge pushing" model for CME, wherein branched actin polymerization promotes severing and invagination of flat CCSs in an epsin-dependent manner by pushing at the CCS boundary, thus releasing forces opposing the intrinsic curvature of clathrin lattices.


Asunto(s)
Actinas , Platino (Metal) , Complejo 2-3 Proteico Relacionado con la Actina , Animales , Clatrina , Vesículas Cubiertas por Clatrina , Endocitosis , Mamíferos , Polimerizacion
7.
Nat Commun ; 13(1): 4078, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35835783

RESUMEN

The lack of tumor infiltration by CD8+ T cells is associated with poor patient response to anti-PD-1 therapy. Understanding how tumor infiltration is regulated is key to improving treatment efficacy. Here, we report that phosphorylation of HRS, a pivotal component of the ESCRT complex involved in exosome biogenesis, restricts tumor infiltration of cytolytic CD8+ T cells. Following ERK-mediated phosphorylation, HRS interacts with and mediates the selective loading of PD-L1 to exosomes, which inhibits the migration of CD8+ T cells into tumors. In tissue samples from patients with melanoma, CD8+ T cells are excluded from the regions where tumor cells contain high levels of phosphorylated HRS. In murine tumor models, overexpression of phosphorylated HRS increases resistance to anti-PD-1 treatment, whereas inhibition of HRS phosphorylation enhances treatment efficacy. Our study reveals a mechanism by which phosphorylation of HRS in tumor cells regulates anti-tumor immunity by inducing PD-L1+ immunosuppressive exosomes, and suggests HRS phosphorylation blockade as a potential strategy to improve the efficacy of cancer immunotherapy.


Asunto(s)
Exosomas , Melanoma , Animales , Antígeno B7-H1 , Linfocitos T CD8-positivos , Línea Celular Tumoral , Exosomas/metabolismo , Humanos , Inmunoterapia , Ratones , Fosforilación , Receptor de Muerte Celular Programada 1 , Microambiente Tumoral
8.
Eur J Cell Biol ; 101(3): 151228, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35483122

RESUMEN

Adenomatous Polyposis Coli (APC) protein is mostly known as a tumor suppressor that regulates Wnt signaling, but is also an important cytoskeletal protein. Mutations in the APC gene are linked to colorectal cancer and various neurological disorders and intellectual disabilities. Cytoskeletal functions of APC appear to have significant contributions to both types of these disorders. As a cytoskeletal protein, APC can regulate both actin and microtubule cytoskeletons, which together form the main machinery for cell migration. As APC is a multifunctional protein with numerous interaction partners, the complete picture of how APC regulates cell motility is still unavailable. However, some molecular mechanisms begin to emerge. Here, we review available information about roles of APC in cell migration and propose a model explaining how microtubules, using APC as an intermediate, can initiate leading edge protrusion in response to external signals by stimulating Arp2/3 complex-dependent nucleation of branched actin filament networks via a series of intermediate events.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon , Movimiento Celular , Genes APC , Actinas/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Humanos , Microtúbulos/metabolismo
9.
Methods Mol Biol ; 2364: 25-52, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34542847

RESUMEN

The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments-are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher-order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton.This article describes application of rotary shadowing (or platinum replica ) EM (PREM) for visualization of the cytoskeleton . The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction (or mechanical "unroofing") of cells to expose their cytoskeleton , chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved and individual proteins can be identified by immunogold labeling. More importantly, PREM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high-resolution structural organization of the cytoskeleton in the same cell.


Asunto(s)
Microscopía Electrónica , Citoesqueleto de Actina , Actinas , Citoesqueleto , Detergentes , Microtúbulos , Platino (Metal)
10.
Mol Biol Cell ; 32(7): 579-589, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33502904

RESUMEN

Human fibroblasts can switch between lamellipodia-dependent and -independent migration mechanisms on two-dimensional surfaces and in three-dimensional (3D) matrices. RhoA GTPase activity governs the switch from low-pressure lamellipodia to high-pressure lobopodia in response to the physical structure of the 3D matrix. Inhibiting actomyosin contractility in these cells reduces intracellular pressure and reverts lobopodia to lamellipodial protrusions via an unknown mechanism. To test the hypothesis that high pressure physically prevents lamellipodia formation, we manipulated pressure by activating RhoA or changing the osmolarity of the extracellular environment and imaged cell protrusions. We find RhoA activity inhibits Rac1-mediated lamellipodia formation through two distinct pathways. First, RhoA boosts intracellular pressure by increasing actomyosin contractility and water influx but acts upstream of Rac1 to inhibit lamellipodia formation. Increasing osmotic pressure revealed a second RhoA pathway, which acts through nonmuscle myosin II (NMII) to disrupt lamellipodia downstream from Rac1 and elevate pressure. Interestingly, Arp2/3 inhibition triggered a NMII-dependent increase in intracellular pressure, along with lamellipodia disruption. Together, these results suggest that actomyosin contractility and water influx are coordinated to increase intracellular pressure, and RhoA signaling can inhibit lamellipodia formation via two distinct pathways in high-pressure cells.


Asunto(s)
Presión Osmótica/fisiología , Seudópodos/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/fisiología , Actomiosina/metabolismo , Técnicas de Cultivo de Célula , Movimiento Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Miosina Tipo II/metabolismo , Miosina Tipo II/fisiología , Transducción de Señal
11.
Int Rev Cell Mol Biol ; 356: 197-256, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33066874

RESUMEN

During development of metastasis, tumor cells migrate through different tissues and encounter different extracellular matrices. An ability of cells to adapt mechanisms of their migration to these diverse environmental conditions, called migration plasticity, gives tumor cells an advantage over normal cells for long distant dissemination. Different modes of individual cell motility-mesenchymal and amoeboid-are driven by different molecular mechanisms, which largely depend on functions of the actin cytoskeleton that can be modulated in a wide range by cellular signaling mechanisms in response to environmental conditions. Various triggers can switch one motility mode to another, but regulations of these transitions are incompletely understood. However, understanding of the mechanisms driving migration plasticity is instrumental for finding anti-cancer treatment capable to stop cancer metastasis. In this review, we discuss cytoskeletal features, which allow the individually migrating cells to switch between mesenchymal and amoeboid migrating modes, called mesenchymal-to-amoeboid transition (MAT). We briefly describe main characteristics of different cell migration modes, and then discuss the triggering factors that initiate MAT with special attention to cytoskeletal features essential for migration plasticity.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Movimiento Celular , Modelos Biológicos , Neoplasias/metabolismo , Animales , Humanos , Metástasis de la Neoplasia , Neoplasias/patología
12.
Nat Commun ; 11(1): 4818, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32968060

RESUMEN

Migrating cells move across diverse assemblies of extracellular matrix (ECM) that can be separated by micron-scale gaps. For membranes to protrude and reattach across a gap, actin filaments, which are relatively weak as single filaments, must polymerize outward from adhesion sites to push membranes towards distant sites of new adhesion. Here, using micropatterned ECMs, we identify T-Plastin, one of the most ancient actin bundling proteins, as an actin stabilizer that promotes membrane protrusions and enables bridging of ECM gaps. We show that T-Plastin widens and lengthens protrusions and is specifically enriched in active protrusions where F-actin is devoid of non-muscle myosin II activity. Together, our study uncovers critical roles of the actin bundler T-Plastin to promote protrusions and migration when adhesion is spatially-gapped.


Asunto(s)
Movimiento Celular/fisiología , Extensiones de la Superficie Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Sistemas CRISPR-Cas , Adhesión Celular , Línea Celular , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Técnicas de Inactivación de Genes , Humanos , Cinética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/ultraestructura , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/ultraestructura , Miosinas/metabolismo , Seudópodos/metabolismo , Receptor EphB2
13.
JCI Insight ; 5(16)2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32814715

RESUMEN

Actin γ 2, smooth muscle (ACTG2) R257C mutation is the most common genetic cause of visceral myopathy. Individuals with ACTG2 mutations endure prolonged hospitalizations and surgical interventions, become dependent on intravenous nutrition and bladder catheterization, and often die in childhood. Currently, we understand little about how ACTG2 mutations cause disease, and there are no mechanism-based treatments. Our goal was to characterize the effects of ACTG2R257C on actin organization and function in visceral smooth muscle cells. We overexpressed ACTG2WT or ACTG2R257C in primary human intestinal smooth muscle cells (HISMCs) and performed detailed quantitative analyses to examine effects of ACTG2R257C on (a) actin filament formation and subcellular localization, (b) actin-dependent HISMC functions, and (c) smooth muscle contractile gene expression. ACTG2R257C resulted in 41% fewer, 13% thinner, 33% shorter, and 40% less branched ACTG2 filament bundles compared with ACTG2WT. Curiously, total F-actin probed by phalloidin and a pan-actin antibody was unchanged between ACTG2WT- and ACTG2R257C-expressing HISMCs, as was ultrastructural F-actin organization. ACTG2R257C-expressing HISMCs contracted collagen gels similar to ACTG2WT-expressing HISMCs but spread 21% more and were 11% more migratory. In conclusion, ACTG2R257C profoundly affects ACTG2 filament bundle structure, without altering global actin cytoskeleton in HISMCs.


Asunto(s)
Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/ultraestructura , Movimiento Celular/genética , Células Cultivadas , Colágeno/química , Regulación de la Expresión Génica , Humanos , Seudoobstrucción Intestinal/genética , Contracción Muscular/genética , Músculo Liso/citología , Mutación
14.
Mol Biol Cell ; 31(20): 2168-2178, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32697617

RESUMEN

SCAR/WAVE proteins and Arp2/3 complex assemble branched actin networks at the leading edge. Two isoforms of SCAR/WAVE, WAVE1 and WAVE2, reside at the leading edge, yet it has remained unclear whether they perform similar or distinct roles. Further, there have been conflicting reports about the Arp2/3-independent biochemical activities of WAVE1 on actin filament elongation. To investigate this in vivo, we knocked out WAVE1 and WAVE2 genes, individually and together, in B16-F1 melanoma cells. We demonstrate that WAVE1 and WAVE2 are redundant for lamellipodia formation and motility. However, there is a significant decrease in the rate of leading edge actin extension in WAVE2 KO cells, and an increase in WAVE1 KO cells. The faster rates of actin extension in WAVE1 KO cells are offset by faster retrograde flow, and therefore do not translate into faster lamellipodium protrusion. Thus, WAVE1 restricts the rate of actin extension at the leading edge, and appears to couple actin networks to the membrane to drive protrusion. Overall, these results suggest that WAVE1 and WAVE2 have redundant roles in promoting Arp2/3-dependent actin nucleation and lamellipodia formation, but distinct roles in controlling actin network extension and harnessing network growth to cell protrusion.


Asunto(s)
Actinas/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Movimiento Celular/fisiología , Extensiones de la Superficie Celular/metabolismo , Humanos , Proteínas de Microfilamentos/metabolismo , Seudópodos/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética
15.
J Cell Biol ; 219(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32597939

RESUMEN

Cell migration is driven by pushing and pulling activities of the actin cytoskeleton, but migration directionality is largely controlled by microtubules. This function of microtubules is especially critical for neuron navigation. However, the underlying mechanisms are poorly understood. Here we show that branched actin filament networks, the main pushing machinery in cells, grow directly from microtubule tips toward the leading edge in growth cones of hippocampal neurons. Adenomatous polyposis coli (APC), a protein with both tumor suppressor and cytoskeletal functions, concentrates at the microtubule-branched network interface, whereas APC knockdown nearly eliminates branched actin in growth cones and prevents growth cone recovery after repellent-induced collapse. Conversely, encounters of dynamic APC-positive microtubule tips with the cell edge induce local actin-rich protrusions. Together, we reveal a novel mechanism of cell navigation involving APC-dependent assembly of branched actin networks on microtubule tips.


Asunto(s)
Actinas/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Poliposis Adenomatosa del Colon/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Movimiento Celular/fisiología , Células Cultivadas , Conos de Crecimiento/metabolismo , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley
16.
Curr Biol ; 30(12): 2386-2394.e4, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32386534

RESUMEN

Septins form rod-shaped hetero-oligomeric complexes that assemble into filaments and other higher-order structures, such as rings or hourglasses, at the cell division site in fungal and animal cells [1-4] to carry out a wide range of functions, including cytokinesis and cell morphogenesis. However, the architecture of septin higher-order assemblies and their control mechanisms, including regulation by conserved kinases [5, 6], remain largely unknown. In the budding yeast Saccharomyces cerevisiae, the five mitotic septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1) localize to the bud neck and form an hourglass before cytokinesis that acts as a scaffold for proteins involved in multiple processes as well as a membrane-diffusible barrier between the mother and developing bud [7-9]. The hourglass is remodeled into a double ring that sandwiches the actomyosin ring at the onset of cytokinesis [10-13]. How septins are assembled into a highly ordered hourglass structure at the division site [13] is largely unexplored. Here we show that the LKB1-like kinase Elm1, which has been implicated in septin organization [14], cell morphogenesis [15], and mitotic exit [16, 17], specifically associates with the septin hourglass during the cell cycle and controls hourglass assembly and stability, especially for the daughter half, by regulating filament pairing and the functionality of its substrate, the septin-binding protein Bni5. This study illustrates how a protein kinase regulates septin architecture at the filament level and suggests that filament pairing is a highly regulated process during septin assembly and remodeling in vivo.


Asunto(s)
División Celular , Proteínas Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Septinas/metabolismo , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Nat Cell Biol ; 22(6): 674-688, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32451441

RESUMEN

The dynamin GTPase is known to bundle actin filaments, but the underlying molecular mechanism and physiological relevance remain unclear. Our genetic analyses revealed a function of dynamin in propelling invasive membrane protrusions during myoblast fusion in vivo. Using biochemistry, total internal reflection fluorescence microscopy, electron microscopy and cryo-electron tomography, we show that dynamin bundles actin while forming a helical structure. At its full capacity, each dynamin helix captures 12-16 actin filaments on the outer rim of the helix. GTP hydrolysis by dynamin triggers disassembly of fully assembled dynamin helices, releasing free dynamin dimers/tetramers and facilitating Arp2/3-mediated branched actin polymerization. The assembly/disassembly cycles of dynamin promote continuous actin bundling to generate mechanically stiff actin super-bundles. Super-resolution and immunogold platinum replica electron microscopy revealed dynamin along actin bundles at the fusogenic synapse. These findings implicate dynamin as a unique multifilament actin-bundling protein that regulates the dynamics and mechanical strength of the actin cytoskeletal network.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Comunicación Celular , Drosophila melanogaster/metabolismo , Dinaminas/metabolismo , Endocitosis , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/genética , Secuencia de Aminoácidos , Animales , Drosophila melanogaster/genética , Dinaminas/genética , Femenino , Guanosina Trifosfato/metabolismo , Masculino , Mioblastos/citología , Mioblastos/metabolismo , Unión Proteica , Homología de Secuencia
18.
Trends Cell Biol ; 30(7): 556-565, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32278656

RESUMEN

The actin cytoskeleton consists of structurally and biochemically different actin filament arrays. Among them, the actin cortex is thought to have key roles in cell mechanics, but remains a poorly characterized part of the actin cytoskeleton. The cell cortex is typically defined as a thin layer of actin meshwork that uniformly underlies the plasma membrane of the entire cell. However, this definition applies only to specific cases. In general, the cortex structure and subcellular distribution vary significantly across cell types and physiological states of the cell. In this review, I focus on our current knowledge of the structure and molecular composition of the cell cortex.


Asunto(s)
Actinas/metabolismo , Células/metabolismo , Citoesqueleto/metabolismo , Humanos , Fracciones Subcelulares/metabolismo
19.
Curr Biol ; 30(8): 1477-1490.e3, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32197082

RESUMEN

How septin architecture is remodeled from an hourglass to a double ring during cytokinesis in fungal and animal cells remains unknown. Here, we show that during the hourglass-to-double-ring transition in budding yeast, septins acquire a "zonal architecture" in which paired septin filaments that are organized along the mother-bud axis associate with circumferential single septin filaments, the Rho guanine-nucleotide-exchange factor (RhoGEF) Bud3, and the anillin-like protein Bud4 exclusively at the outer zones and with myosin-II filaments in the middle zone. Deletion of Bud3 or its Bud4-interacting domain, but not its RhoGEF domain, leads to a complete loss of the single filaments, whereas deletion of Bud4 or its Bud3-interacting domain destabilizes the transitional hourglass, especially at the mother side, with partial loss of both filament types. Deletion of Bud3 and Bud4 together further weakens the transitional structure and abolishes the double ring formation while causing no obvious defect in actomyosin ring constriction. This and further analyses suggest that Bud3 stabilizes the single filaments, whereas Bud4 strengthens the interaction between the paired and single filaments at the outer zones of the transitional hourglass, as well as in the double ring. This study reveals a striking zonal architecture for the transitional hourglass that pre-patterns two cytokinetic structures-a septin double ring and an actomyosin ring-and also defines the essential roles of a RhoGEF-anillin module in septin architectural remodeling during cytokinesis at the filament level.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Unión al GTP/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Septinas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Contráctiles/genética , Proteínas Contráctiles/metabolismo , Citocinesis/genética , Proteínas de Unión al GTP/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Septinas/metabolismo
20.
J Cell Biol ; 218(8): 2481-2491, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31315944

RESUMEN

Cell sensing of externally applied mechanical strain through integrin-mediated adhesions is critical in development and physiology of muscle, lung, tendon, and arteries, among others. We examined the effects of strain on force transmission through the essential cytoskeletal linker talin. Using a fluorescence-based talin tension sensor (TS), we found that uniaxial stretch of cells on elastic substrates increased tension on talin, which was unexpectedly independent of the orientation of the focal adhesions relative to the direction of strain. High-resolution electron microscopy of the actin cytoskeleton revealed that stress fibers (SFs) are integrated into an isotropic network of cortical actin filaments in which filamin A (FlnA) localizes preferentially to points of intersection between SFs and cortical actin. Knockdown (KD) of FlnA resulted in more isolated, less integrated SFs. After FlnA KD, tension on talin was polarized in the direction of stretch, while FlnA reexpression restored tensional symmetry. These data demonstrate that a FlnA-dependent cortical actin network distributes applied forces over the entire cytoskeleton-matrix interface.


Asunto(s)
Actinas/metabolismo , Filaminas/metabolismo , Estrés Mecánico , Animales , Fenómenos Biomecánicos , Adhesiones Focales/metabolismo , Adhesiones Focales/ultraestructura , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Células 3T3 NIH , Fibras de Estrés/metabolismo , Fibras de Estrés/ultraestructura , Talina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...