Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Nat Med ; 30(4): 1096-1103, 2024 Apr.
Article En | MEDLINE | ID: mdl-38622249

Prasinezumab, a monoclonal antibody that binds aggregated α-synuclein, is being investigated as a potential disease-modifying therapy in early-stage Parkinson's disease. Although in the PASADENA phase 2 study, the primary endpoint (Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) sum of Parts I + II + III) was not met, prasinezumab-treated individuals exhibited slower progression of motor signs than placebo-treated participants (MDS-UPDRS Part III). We report here an exploratory analysis assessing whether prasinezumab showed greater benefits on motor signs progression in prespecified subgroups with faster motor progression. Prasinezumab's potential effects on disease progression were assessed in four prespecified and six exploratory subpopulations of PASADENA: use of monoamine oxidase B inhibitors at baseline (yes versus no); Hoehn and Yahr stage (2 versus 1); rapid eye movement sleep behavior disorder (yes versus no); data-driven subphenotypes (diffuse malignant versus nondiffuse malignant); age at baseline (≥60 years versus <60 years); sex (male versus female); disease duration (>12 months versus <12 months); age at diagnosis (≥60 years versus <60 years); motor subphenotypes (akinetic-rigid versus tremor-dominant); and motor subphenotypes (postural instability gait dysfunction versus tremor-dominant). In these subpopulations, the effect of prasinezumab on slowing motor signs progression (MDS-UPDRS Part III) was greater in the rapidly progressing subpopulations (for example, participants who were diffuse malignant or taking monoamine oxidase B inhibitors at baseline). This exploratory analysis suggests that, in a trial of 1-year duration, prasinezumab might reduce motor progression to a greater extent in individuals with more rapidly progressing Parkinson's disease. However, because this was a post hoc analysis, additional randomized clinical trials are needed to validate these findings.


Parkinson Disease , Humans , Male , Female , Middle Aged , Tremor/drug therapy , Antiparkinson Agents/therapeutic use , Monoamine Oxidase/therapeutic use , Disease Progression
3.
N Engl J Med ; 387(5): 421-432, 2022 08 04.
Article En | MEDLINE | ID: mdl-35921451

BACKGROUND: Aggregated α-synuclein plays an important role in the pathogenesis of Parkinson's disease. The monoclonal antibody prasinezumab, directed at aggregated α-synuclein, is being studied for its effect on Parkinson's disease. METHODS: In this phase 2 trial, we randomly assigned participants with early-stage Parkinson's disease in a 1:1:1 ratio to receive intravenous placebo or prasinezumab at a dose of 1500 mg or 4500 mg every 4 weeks for 52 weeks. The primary end point was the change from baseline to week 52 in the sum of scores on parts I, II, and III of the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS; range, 0 to 236, with higher scores indicating greater impairment). Secondary end points included the dopamine transporter levels in the putamen of the hemisphere ipsilateral to the clinically more affected side of the body, as measured by 123I-ioflupane single-photon-emission computed tomography (SPECT). RESULTS: A total of 316 participants were enrolled; 105 were assigned to receive placebo, 105 to receive 1500 mg of prasinezumab, and 106 to receive 4500 mg of prasinezumab. The baseline mean MDS-UPDRS scores were 32.0 in the placebo group, 31.5 in the 1500-mg group, and 30.8 in the 4500-mg group, and mean (±SE) changes from baseline to 52 weeks were 9.4±1.2 in the placebo group, 7.4±1.2 in the 1500-mg group (difference vs. placebo, -2.0; 80% confidence interval [CI], -4.2 to 0.2; P = 0.24), and 8.8±1.2 in the 4500-mg group (difference vs. placebo, -0.6; 80% CI, -2.8 to 1.6; P = 0.72). There was no substantial difference between the active-treatment groups and the placebo group in dopamine transporter levels on SPECT. The results for most clinical secondary end points were similar in the active-treatment groups and the placebo group. Serious adverse events occurred in 6.7% of the participants in the 1500-mg group and in 7.5% of those in the 4500-mg group; infusion reactions occurred in 19.0% and 34.0%, respectively. CONCLUSIONS: Prasinezumab therapy had no meaningful effect on global or imaging measures of Parkinson's disease progression as compared with placebo and was associated with infusion reactions. (Funded by F. Hoffmann-La Roche and Prothena Biosciences; PASADENA ClinicalTrials.gov number, NCT03100149.).


Antibodies, Monoclonal, Humanized , Antiparkinson Agents , Parkinson Disease , alpha-Synuclein , Antibodies, Monoclonal, Humanized/therapeutic use , Antiparkinson Agents/therapeutic use , Dopamine Plasma Membrane Transport Proteins/therapeutic use , Double-Blind Method , Humans , Parkinson Disease/drug therapy , Treatment Outcome , alpha-Synuclein/antagonists & inhibitors
4.
Sci Rep ; 12(1): 12081, 2022 07 15.
Article En | MEDLINE | ID: mdl-35840753

Digital health technologies enable remote and therefore frequent measurement of motor signs, potentially providing reliable and valid estimates of motor sign severity and progression in Parkinson's disease (PD). The Roche PD Mobile Application v2 was developed to measure bradykinesia, bradyphrenia and speech, tremor, gait and balance. It comprises 10 smartphone active tests (with ½ tests administered daily), as well as daily passive monitoring via a smartphone and smartwatch. It was studied in 316 early-stage PD participants who performed daily active tests at home then carried a smartphone and wore a smartwatch throughout the day for passive monitoring (study NCT03100149). Here, we report baseline data. Adherence was excellent (96.29%). All pre-specified sensor features exhibited good-to-excellent test-retest reliability (median intraclass correlation coefficient = 0.9), and correlated with corresponding Movement Disorder Society-Unified Parkinson's Disease Rating Scale items (rho: 0.12-0.71). These findings demonstrate the preliminary reliability and validity of remote at-home quantification of motor sign severity with the Roche PD Mobile Application v2 in individuals with early PD.


Mobile Applications , Parkinson Disease , Remote Sensing Technology , Humans , Parkinson Disease/physiopathology , Reproducibility of Results , Smartphone , Tremor/physiopathology
5.
Front Neurol ; 12: 705407, 2021.
Article En | MEDLINE | ID: mdl-34659081

Background: Currently available treatments for Parkinson's disease (PD) do not slow clinical progression nor target alpha-synuclein, a key protein associated with the disease. Objective: The study objective was to evaluate the efficacy and safety of prasinezumab, a humanized monoclonal antibody that binds aggregated alpha-synuclein, in individuals with early PD. Methods: The PASADENA study is a multicenter, randomized, double-blind, placebo-controlled treatment study. Individuals with early PD, recruited across the US and Europe, received monthly intravenous doses of prasinezumab (1,500 or 4,500 mg) or placebo for a 52-week period (Part 1), followed by a 52-week extension (Part 2) in which all participants received active treatment. Key inclusion criteria were: aged 40-80 years; Hoehn & Yahr (H&Y) Stage I or II; time from diagnosis ≤2 years; having bradykinesia plus one other cardinal sign of PD (e.g., resting tremor, rigidity); DAT-SPECT imaging consistent with PD; and either treatment naïve or on a stable monoamine oxidase B (MAO-B) inhibitor dose. Study design assumptions for sample size and study duration were built using a patient cohort from the Parkinson's Progression Marker Initiative (PPMI). In this report, baseline characteristics are compared between the treatment-naïve and MAO-B inhibitor-treated PASADENA cohorts and between the PASADENA and PPMI populations. Results: Of the 443 patients screened, 316 were enrolled into the PASADENA study between June 2017 and November 2018, with an average age of 59.9 years and 67.4% being male. Mean time from diagnosis at baseline was 10.11 months, with 75.3% in H&Y Stage II. Baseline motor and non-motor symptoms (assessed using Movement Disorder Society-Unified Parkinson's Disease Rating Scale [MDS-UPDRS]) were similar in severity between the MAO-B inhibitor-treated and treatment-naïve PASADENA cohorts (MDS-UPDRS sum of Parts I + II + III [standard deviation (SD)]; 30.21 [11.96], 32.10 [13.20], respectively). The overall PASADENA population (63.6% treatment naïve and 36.4% on MAO-B inhibitor) showed a similar severity in MDS-UPDRS scores (e.g., MDS-UPDRS sum of Parts I + II + III [SD]; 31.41 [12.78], 32.63 [13.04], respectively) to the PPMI cohort (all treatment naïve). Conclusions: The PASADENA study population is suitable to investigate the potential of prasinezumab to slow disease progression in individuals with early PD. Trial Registration: NCT03100149.

6.
Nat Neurosci ; 19(12): 1592-1598, 2016 12.
Article En | MEDLINE | ID: mdl-27643431

During nervous system development, neurons extend axons along well-defined pathways. The current understanding of axon pathfinding is based mainly on chemical signaling. However, growing neurons interact not only chemically but also mechanically with their environment. Here we identify mechanical signals as important regulators of axon pathfinding. In vitro, substrate stiffness determined growth patterns of Xenopus retinal ganglion cell axons. In vivo atomic force microscopy revealed a noticeable pattern of stiffness gradients in the embryonic brain. Retinal ganglion cell axons grew toward softer tissue, which was reproduced in vitro in the absence of chemical gradients. To test the importance of mechanical signals for axon growth in vivo, we altered brain stiffness, blocked mechanotransduction pharmacologically and knocked down the mechanosensitive ion channel piezo1. All treatments resulted in aberrant axonal growth and pathfinding errors, suggesting that local tissue stiffness, read out by mechanosensitive ion channels, is critically involved in instructing neuronal growth in vivo.


Axons/metabolism , Brain/growth & development , Mechanotransduction, Cellular/physiology , Neurogenesis/physiology , Retina/metabolism , Visual Pathways/growth & development , Animals , Axons/pathology , Retinal Ganglion Cells , Xenopus laevis , Zebrafish
7.
J Neurosci ; 33(25): 10384-95, 2013 Jun 19.
Article En | MEDLINE | ID: mdl-23785151

The RNA-binding protein Hermes [RNA-binding protein with multiple splicing (RBPMS)] is expressed exclusively in retinal ganglion cells (RGCs) in the CNS, but its function in these cells is not known. Here we show that Hermes protein translocates in granules from RGC bodies down the growing axons. Hermes loss of function in both Xenopus laevis and zebrafish embryos leads to a significant reduction in retinal axon arbor complexity in the optic tectum, and expression of a dominant acting mutant Hermes protein, defective in RNA-granule localization, causes similar defects in arborization. Time-lapse analysis of branch dynamics reveals that the decrease in arbor complexity is caused by a reduction in new branches rather than a decrease in branch stability. Surprisingly, Hermes depletion also leads to enhanced early visual behavior and an increase in the density of presynaptic puncta, suggesting that reduced arborization is accompanied by increased synaptogenesis to maintain synapse number.


Axons/physiology , RNA-Binding Proteins/physiology , Retinal Ganglion Cells/physiology , Synapses/physiology , Xenopus Proteins/physiology , Animals , Behavior, Animal/physiology , Blotting, Western , Cell Differentiation/physiology , Cells, Cultured , DNA/genetics , Electroporation , Embryo, Nonmammalian , Female , Homeostasis/physiology , Immunohistochemistry , In Situ Hybridization , Male , Microscopy, Confocal , Plasmids/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Retina/growth & development , Retina/physiology , Vision, Ocular/physiology , Xenopus , Zebrafish/physiology
8.
Mitochondrion ; 11(3): 421-9, 2011 May.
Article En | MEDLINE | ID: mdl-21167961

We studied the functional properties of isolated brain mitochondria (BM) prepared from total rat brain (BM(total)) or from cerebral subregions under basal and Ca(2+) overload conditions in order to evaluate the effects of cyclosporine A (CsA) in a regiospecific manner. CsA-induced effects were compared with those of two derivatives-the none-immunosuppressive [O-(NH(2)(CH2)(5)NHC(O)CH(2))-D-Ser](8)-CsA (Cs9) and its congener, the immunosuppressive [D-Ser](8)-CsA. The glutamate/malate-dependent state 3 respiration of mitochondria (state 3(glu/mal)) differed in region-specific manner (cortex > striatum = cerebellum > substantia nigra > hippocampus), but was significantly increased by 1µM CsA (+21±5%) in all regions. Ca(2+) overload induced by addition of 20µM Ca(2+) caused a significant decrease of state 3(glu/mal) (-45 to -55%) which was almost completely prevented in the presence of 1µM CsA, 1µM Cs9 or 1µM [D-Ser](8)-CsA. Mitochondrial Ca(2+) accumulation thresholds linked to permeability transition (PT) as well as the rate and completeness of mitochondrial Ca(2+) accumulation differed between different brain regions. For the first time, we provide a detailed, regiospecific analysis of Ca(2+)-dependent properties of brain mitochondria. Regardless of their immunosuppressive impact, CsA and its analogues improved mitochondrial functional properties under control conditions. They also preserved brain mitochondria against Ca(2+) overload-mediated PT and functional impairments. Since Cs9 does not mediate immunosuppression, it might be used as a more specific PT inhibitor than CsA.


Brain/drug effects , Cyclosporine/metabolism , Enzyme Inhibitors/metabolism , Mitochondria/drug effects , Animals , Calcium/metabolism , Cell Respiration/drug effects , Energy Metabolism/drug effects , Male , Rats
9.
PLoS One ; 3(7): e2668, 2008 Jul 16.
Article En | MEDLINE | ID: mdl-18628975

BACKGROUND: Histone-modifying enzymes are essential for a wide variety of cellular processes dependent upon changes in gene expression. Histone deacetylases (HDACs) lead to the compaction of chromatin and subsequent silencing of gene transcription, and they have recently been implicated in a diversity of functions and dysfunctions in the postnatal and adult brain including ocular dominance plasticity, memory consolidation, drug addiction, and depression. Here we investigate the role of HDACs in the generation of neurons and astrocytes in the embryonic brain. PRINCIPAL FINDINGS: As a variety of HDACs are expressed in differentiating neural progenitor cells, we have taken a pharmacological approach to inhibit multiple family members. Inhibition of class I and II HDACs in developing mouse embryos with trichostatin A resulted in a dramatic reduction in neurogenesis in the ganglionic eminences and a modest increase in neurogenesis in the cortex. An identical effect was observed upon pharmacological inhibition of HDACs in in vitro-differentiating neural precursors derived from the same brain regions. A reduction in neurogenesis in ganglionic eminence-derived neural precursors was accompanied by an increase in the production of immature astrocytes. We show that HDACs control neurogenesis by inhibition of the bone morphogenetic protein BMP2/4 signaling pathway in radial glial cells. HDACs function at the transcriptional level by inhibiting and promoting, respectively, the expression of Bmp2 and Smad7, an intracellular inhibitor of BMP signaling. Inhibition of the BMP2/4 signaling pathway restored normal levels of neurogenesis and astrogliogenesis to both ganglionic eminence- and cortex-derived cultures in which HDACs were inhibited. CONCLUSIONS: Our results demonstrate a transcriptionally-based regulation of BMP2/4 signaling by HDACs both in vivo and in vitro that is critical for neurogenesis in the ganglionic eminences and that modulates cortical neurogenesis. The results also suggest that HDACs may regulate the developmental switch from neurogenesis to astrogliogenesis that occurs in late gestation.


Bone Morphogenetic Proteins/metabolism , Brain/embryology , Gene Expression Regulation, Developmental , Histone Deacetylases/metabolism , Neurons/metabolism , Transforming Growth Factor beta/metabolism , Animals , Astrocytes/cytology , Bone Morphogenetic Protein 2 , Bone Morphogenetic Protein 4 , Chromatin/metabolism , Hydroxamic Acids/pharmacology , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Models, Biological , Signal Transduction
...