Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Toxins (Basel) ; 15(9)2023 09 05.
Article En | MEDLINE | ID: mdl-37755980

The farming of shellfish plays an important role in providing sustainable economic growth in coastal, rural communities in Scotland and acts as an anchor industry, supporting a range of ancillary jobs in the processing, distribution and exporting industries. The Scottish Government is encouraging shellfish farmers to double their economic contribution by 2030. These farmers face numerous challenges to reach this goal, among which is the problem caused by toxin-producing microplankton that can contaminate their shellfish, leading to harvesting site closure and the recall of product. Food Standards Scotland, a non-ministerial department of the Scottish Government, carries out a monitoring programme for both the toxin-producing microplankton and the toxins in shellfish flesh, with farms being closed when official thresholds for any toxin are breached. The farm remains closed until testing for the problematic toxin alone, often diarrhetic shellfish toxin (DST), shows the site to have dropped below the regulatory threshold. While this programme has proved to be robust, questions remain regarding the other toxins that may be present at a closed site. In this study, we tested archival material collected during site closures but only tested for DSTs as part of the official control monitoring. We found the presence of amnesic shellfish toxin (AST) in low concentrations in the majority of sites tested. In one case, the level of AST breached the official threshold. This finding has implications for AST monitoring programmes around Europe.


Diatoms , Marine Toxins , Marine Toxins/toxicity , Shellfish/analysis , Seafood , Aquaculture
2.
Harmful Algae ; 87: 101623, 2019 07.
Article En | MEDLINE | ID: mdl-31349885

As the official control laboratory for marine biotoxins within Great Britain, the Centre for Environment, Fisheries and Aquaculture Science, in conjunction with the Scottish Association for Marine Science, has amassed a decade's worth of data regarding the prevalence of the toxins associated with Amnesic Shellfish Poisoning within British waters. This monitoring involves quantitative HPLC-UV analysis of shellfish domoic acid concentration, the causative toxin for Amnesic Shellfish Poisoning, and water monitoring for Pseudo-nitzschia spp., the phytoplankton genus that produces domoic acid. The data obtained since 2008 indicate that whilst the occurrence of domoic acid in shellfish was generally below the maximum permitted limit of 20 mg/kg, there were a number of toxic episodes that breached this limit. The data showed an increase in the frequency of both domoic acid occurrence and toxic events, although there was considerable annual variability in intensity and geographical location of toxic episodes. A particularly notable increase in domoic acid occurrence in England was observed during 2014. Comparison of Scottish toxin data and Pseudo-nitzschia cell densities during this ten-year period revealed a complex relationship between the two measurements. Whilst the majority of events were associated with blooms, absolute cell densities of Pseudo-nitzschia did not correlate with domoic acid concentrations in shellfish tissue. This is believed to be partly due to the presence of a number of different Pseudo-nitzschia species in the water that can exhibit variable toxin production. These data highlight the requirement for tissue monitoring as part of an effective monitoring programme to protect the consumer, as well as the benefit of more detailed taxonomic discrimination of the Pseudo-nitzschia genus to allow greater accuracy in the prediction of shellfish toxicity.


Bivalvia , Marine Toxins , Animals , England , Kainic Acid/analogs & derivatives , Shellfish
3.
Harmful Algae ; 87: 101629, 2019 07.
Article En | MEDLINE | ID: mdl-31349886

Cefas has been responsible for the delivery of official control biotoxin testing of bivalve molluscs from Great Britain for just over a decade. Liquid chromatography tandem mass spectrometric (LC-MS/MS) methodology has been used for the quantitation of lipophilic toxins (LTs) since 2011. The temporal and spatial distribution of okadaic acid group toxins and profiles in bivalves between 2011 and 2016 have been recently reported. Here we present data on the two other groups of regulated lipophilic toxins, azaspiracids (AZAs) and yessotoxins (YTXs), over the same period. The latter group has also been investigated for a potential link with Protoceratium reticulatum and Lingulodinium polyedra, both previously recognised as YTXs producing phytoplankton. On average, AZAs were quantified in 3.2% of all tested samples but notable inter-annual variation in abundance was observed. The majority of all AZA contaminated samples were found between July 2011 and August 2013 in Scotland, while only two, three-month long, AZA events were observed in 2015 and 2016 in the south-west of England. Maximum concentrations were generally reached in late summer or early autumn. Reasons for AZAs persistence during the 2011/2012 and 2012/2013 winters are discussed. Only one toxin profile was identified, represented by both AZA1 and AZA2 toxins at an approximate ratio of 2 : 1, suggesting a single microalgal species was the source of AZAs in British bivalves. Although AZA1 was always the most dominant toxin, its proportion varied between mussels, Pacific oysters and surf clams. The YTXs were the least represented group among regulated LTs. YTXs were found almost exclusively on the south-west coast of Scotland, with the exception of 2013, when the majority of contaminated samples originated from the Shetland Islands. The highest levels were recorded in the summer months and followed a spike in Protoceratium reticulatum cell densities. YTX was the most dominant toxin in shellfish, further strengthening the link to P. reticulatum as the YTX source. Neither homo-YTX, nor 45-OH homo-YTX were detected throughout the monitored period. 45-OH YTX, thought to be a shellfish metabolite associated with YTX elimination, contributed on average 26% in mussels. Although the correlation between 45-OH YTX abundance and the speed of YTX depuration could not be confirmed, we noted the half-life of YTX was more than two-times longer in queen scallops, which contained 100% YTX, than in mussels. No other bivalve species were affected by YTXs. This is the first detailed evaluation of AZAs and YTXs occurrences and their profiles in shellfish from Great Britain over a period of multiple years.


Bivalvia , Tandem Mass Spectrometry , Animals , Chromatography, Liquid , England , Marine Toxins , Mollusk Venoms , Oxocins , Scotland , Spiro Compounds , United Kingdom
4.
Toxins (Basel) ; 10(10)2018 09 28.
Article En | MEDLINE | ID: mdl-30274219

Diarrhetic shellfish toxins produced by the dinoflagellate genus Dinophysis are a major problem for the shellfish industry worldwide. Separate species of the genus have been associated with the production of different analogues of the okadaic acid group of toxins. To evaluate the spatial and temporal variability of Dinophysis species and toxins in the important shellfish-harvesting region of the Scottish west coast, we analysed data collected from 1996 to 2017 in two contrasting locations: Loch Ewe and the Clyde Sea. Seasonal studies were also undertaken, in Loch Ewe in both 2001 and 2002, and in the Clyde in 2015. Dinophysis acuminata was present throughout the growing season during every year of the study, with blooms typically occurring between May and September at both locations. The appearance of D. acuta was interannually sporadic and, when present, was most abundant in the late summer and autumn. The Clyde field study in 2015 indicated the importance of a temperature front in the formation of a D. acuta bloom. A shift in toxin profiles of common mussels (Mytilus edulis) tested during regulatory monitoring was evident, with a proportional decrease in okadaic acid (OA) and dinophysistoxin-1 (DTX1) and an increase in dinophysistoxin-2 (DTX2) occurring when D. acuta became dominant. Routine enumeration of Dinophysis to species level could provide early warning of potential contamination of shellfish with DTX2 and thus determine the choice of the most suitable kit for effective end-product testing.


Bivalvia/chemistry , Dinoflagellida/isolation & purification , Marine Toxins/analysis , Okadaic Acid/analysis , Pyrans/analysis , Water Pollutants/analysis , Animals , Environmental Monitoring , Food Contamination/analysis , Scotland , Seafood/analysis , Shellfish Poisoning
5.
Harmful Algae ; 69: 1-17, 2017 11.
Article En | MEDLINE | ID: mdl-29122238

Fjordic coastlines provide an ideal protected environment for both finfish and shellfish aquaculture operations. This study reports the results of a cruise to the Scottish Clyde Sea, and associated fjordic sea lochs, that coincided with blooms of the diarrhetic shellfish toxin producing dinoflagellate Dinophysis acuta and the diatom genus Chaetoceros, that can generate finfish mortalities. Unusually, D. acuta reached one order of magnitude higher cell abundance in the water column (2840cellsL-1) than the more common Dinophysis acuminata (200cellsL-1) and was linked with elevated shellfish toxicity (maximum 601±237µg OA eq/kg shellfish flesh) which caused shellfish harvesting closures in the region. Significant correlations between D. acuta abundance and that of Mesodinium rubrum were also observed across the cruise transect potentially supporting bloom formation of the mixotrophic D. acuta. Significant spatial variability in phytoplankton that was related to physical characteristics of the water column was observed, with a temperature-driven frontal region at the mouth of Loch Fyne being important in the development of the D. acuta, but not the Chaetoceros bloom. The front also provided important protection to the aquaculture located within the loch, with neither of the blooms encroaching within it. Analysis based on a particle-tracking model confirms the importance of the front to cell transport and shows significant inter-annual differences in advection within the region, that are important to the harmful algal bloom risk therein.


Conservation of Natural Resources , Diatoms/isolation & purification , Dinoflagellida/isolation & purification , Harmful Algal Bloom/physiology , Water , Geography , Multivariate Analysis , Oceanography , Phytoplankton/metabolism , Pigments, Biological/analysis , Salinity , Satellite Communications , Scotland , Temperature
...