Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Horm Behav ; 127: 104884, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33171133

RESUMEN

Corticosterone affects physiology and behavior both during normal daily processes but also in response to environmental challenges and is known to mediate life history trade-offs. Many studies have investigated patterns of corticosterone production at targeted times of year, while ignoring underlying annual profiles. We aimed to understand the annual regulation of hypothalamic-pituitary-adrenal (HPA) axis function of both migrant (Zonotrichia leucophrys gambelii; n = 926) and resident (Z. l. nutalli; n = 688) subspecies of white-crowned sparrow and how it is influenced by environmental conditions - wind, precipitation, and temperature. We predicted that more dramatic seasonal changes in baseline and stress-induced corticosterone would occur in migrants to precisely time the onset of breeding and cope with environmental extremes on their arctic breeding grounds, while changes in residents would be muted as they experience a more forgiving breeding schedule and comparatively benign environmental conditions in coastal California. During the course of a year, the harshest conditions were experienced the summer breeding grounds for migrants, at which point they had higher corticosterone levels compared to residents. For residents, the winter months coincided with harshest conditions at which point they had higher corticosterone levels than migrants. For both subspecies, corticosterone tended to rise as environmental conditions became colder and windier. We found that the annual maxima in stress-induced corticosterone occurred prior to egg lay for all birds except resident females. Migrants had much higher baseline and acute stress-induced corticosterone during breeding compared to residents; where in a harsher environment the timing of the onset of reproduction is more critical because the breeding season is shorter. Interestingly, molt was the only stage within the annual cycle in which subspecies differences were absent suggesting that a requisite reduction in corticosterone may have to be met for feather growth. These data suggest that modulation of the HPA axis is largely driven by environmental factors, social cues, and their potential interactions with a genetic program.


Asunto(s)
Corteza Suprarrenal/fisiología , Migración Animal/fisiología , Estaciones del Año , Gorriones/fisiología , Animales , Regiones Árticas , Corticosterona/metabolismo , Femenino , Sistema Hipotálamo-Hipofisario/fisiología , Masculino , Muda/fisiología , Sistema Hipófiso-Suprarrenal/fisiología , Reproducción/fisiología , Estrés Fisiológico/fisiología , Temperatura
2.
J Exp Biol ; 223(Pt 1)2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31796607

RESUMEN

The hypothalamic-pituitary-adrenal (HPA) axis is under complex regulatory control at multiple levels. Enzymatic regulation plays an important role in both circulating levels of glucocorticoids and target tissue exposure. Three key enzyme pathways are responsible for the immediate control of glucocorticoids. De novo synthesis of glucocorticoid from cholesterol involves a multistep enzymatic cascade. This cascade terminates with 11ß-hydroxylase, responsible for the final conversion of 11-deoxy precursors into active glucocorticoids. Additionally, 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) controls regeneration of glucocorticoids from inactive metabolites, providing a secondary source of active glucocorticoids. Localized inactivation of glucocorticoids is under the control of Type 2 11ß-HSD (11ß-HSD2). The function of these enzymes is largely unexplored in wild species, particularly songbirds. Here, we investigated the contribution of both clearance and generation of glucocorticoids to regulation of the hormonal stress response via the use of pharmacological antagonists. Additionally, we mapped 11ß-HSD gene expression. We found 11ß-HSD1 primarily in liver, kidney and adrenal glands, although it was detectable across all tissue types. 11ß-HSD2 was predominately expressed in the adrenal glands and kidney with moderate gonadal and liver expression. Inhibition of glucocorticoid generation by metyrapone was found to decrease levels peripherally, while both peripheral and central administration of the 11ß-HSD2 inhibitor DETC resulted in elevated concentrations of corticosterone. These data suggest that during the stress response, peripheral antagonism of the 11ß-HSD system has a greater impact on circulating glucocorticoid levels than central control. Further studies should aim to elucidate the respective roles of the 11ß-HSD and 11ß-hydroxylase enzymes.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/genética , Corticosterona/sangre , Pájaros Cantores/fisiología , Estrés Fisiológico/fisiología , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/metabolismo , Animales , Femenino , Perfilación de la Expresión Génica/veterinaria , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA