Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(39): e2400503121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39298487

RESUMEN

Most eukaryotes have one nucleus and nuclear genome per cell. Ciliates have instead evolved distinct nuclei that coexist in each cell: a silent germline vs. transcriptionally active somatic nuclei. In the best-studied model species, both nuclei can divide asexually, but only germline nuclei undergo meiosis and karyogamy during sex. Thereafter, thousands of DNA segments, called internally eliminated sequences (IESs), are excised from copies of the germline genomes to produce the streamlined somatic genome. In Loxodes, however, somatic nuclei cannot divide but instead develop from germline copies even during asexual cell division, which would incur a huge overhead cost if genome editing was required. Here, we purified and sequenced both genomes in Loxodes magnus to see whether their nondividing somatic nuclei are associated with differences in genome architecture. Unlike in other ciliates studied to date, we did not find canonical germline-limited IESs, implying Loxodes does not extensively edit its genomes. Instead, both genomes appear large and equivalent, replete with retrotransposons and repetitive sequences, unlike the compact, gene-rich somatic genomes of other ciliates. Two other hallmarks of nuclear development in ciliates-domesticated DDE-family transposases and editing-associated small RNAs-were also not found. Thus, among the ciliates, Loxodes genomes most resemble those of conventional eukaryotes. Nonetheless, base modifications, histone marks, and nucleosome positioning of vegetative Loxodes nuclei are consistent with functional differentiation between actively transcribed somatic vs. inactive germline nuclei. Given their phylogenetic position, it is likely that editing was present in the ancestral ciliate but secondarily lost in the Loxodes lineage.


Asunto(s)
Núcleo Celular , Cilióforos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cilióforos/genética , Genoma de Protozoos , ADN Protozoario/genética
2.
J Cell Sci ; 137(16)2024 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-39212120

RESUMEN

The unicellular eukaryote Paramecium tetraurelia contains functionally distinct nuclei: germline micronuclei (MICs) and a somatic macronucleus (MAC). During sex, the MIC genome is reorganized into a new MAC genome and the old MAC is lost. Almost 45,000 unique internal eliminated sequences (IESs) distributed throughout the genome require precise excision to guarantee a functional new MAC genome. Here, we characterize a pair of paralogous PHD finger proteins involved in DNA elimination. DevPF1, the early-expressed paralog, is present in only some of the gametic and post-zygotic nuclei during meiosis. Both DevPF1 and DevPF2 localize in the new developing MACs, where IES excision occurs. Upon DevPF2 knockdown (KD), long IESs are preferentially retained and late-expressed small RNAs decrease; no length preference for retained IESs was observed in DevPF1-KD and development-specific small RNAs were abolished. The expression of at least two genes from the new MAC with roles in genome reorganization seems to be influenced by DevPF1- and DevPF2-KD. Thus, both PHD fingers are crucial for new MAC genome development, with distinct functions, potentially via regulation of non-coding and coding transcription in the MICs and new MACs.


Asunto(s)
Edición Génica , Paramecium tetraurelia , Proteínas Protozoarias , Paramecium tetraurelia/genética , Paramecium tetraurelia/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Macronúcleo/genética , Macronúcleo/metabolismo , Genoma de Protozoos , Micronúcleo Germinal/metabolismo , Micronúcleo Germinal/genética , Meiosis/genética
3.
Trends Genet ; 39(5): 344-346, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36949004

RESUMEN

Many organisms remove DNA from their genomes during development. This has foremost been characterized as a means of defending genomes against mobile elements. However, genome editing actually hides such elements from purifying selection, with the survivors evolving approximately neutrally, 'cluttering' the germline genome, enabling it to enlarge over time.


Asunto(s)
Cilióforos , Edición Génica , Cilióforos/genética , Genoma/genética , Elementos Transponibles de ADN
4.
Proc Natl Acad Sci U S A ; 120(4): e2213887120, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36669098

RESUMEN

Massive DNA excision occurs regularly in ciliates, ubiquitous microbial eukaryotes with somatic and germline nuclei in the same cell. Tens of thousands of internally eliminated sequences (IESs) scattered throughout the ciliate germline genome are deleted during the development of the streamlined somatic genome. The genus Blepharisma represents one of the two high-level ciliate clades (subphylum Postciliodesmatophora) and, unusually, has dual pathways of somatic nuclear and genome development. This makes it ideal for investigating the functioning and evolution of these processes. Here we report the somatic genome assembly of Blepharisma stoltei strain ATCC 30299 (41 Mbp), arranged as numerous telomere-capped minichromosomal isoforms. This genome encodes eight PiggyBac transposase homologs no longer harbored by transposons. All appear subject to purifying selection, but just one, the putative IES excisase, has a complete catalytic triad. We hypothesize that PiggyBac homologs were ancestral excisases that enabled the evolution of extensive natural genome editing.


Asunto(s)
Cilióforos , Paramecium tetraurelia , Edición Génica , Genoma , Cilióforos/genética , Paramecium tetraurelia/metabolismo , Núcleo Celular/metabolismo , ADN Protozoario/genética
5.
Proc Natl Acad Sci U S A ; 120(4): e2213985120, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36669106

RESUMEN

During their development following sexual conjugation, ciliates excise numerous internal eliminated sequences (IESs) from a copy of the germline genome to produce the functional somatic genome. Most IESs are thought to have originated from transposons, but the presumed homology is often obscured by sequence decay. To obtain more representative perspectives on the nature of IESs and ciliate genome editing, we assembled 40,000 IESs of Blepharisma stoltei, a species belonging to a lineage (Heterotrichea) that diverged early from those of the intensively studied model ciliate species. About a quarter of IESs were short (<115 bp), largely nonrepetitive, and with a pronounced ~10 bp periodicity in length; the remainder were longer (up to 7 kbp) and nonperiodic and contained abundant interspersed repeats. Contrary to the expectation from current models, the assembled Blepharisma germline genome encodes few transposases. Instead, its most abundant repeat (8,000 copies) is a Miniature Inverted-repeat Transposable Element (MITE), apparently a deletion derivative of a germline-limited Pogo-family transposon. We hypothesize that MITEs are an important source of IESs whose proliferation is eventually self-limiting and that rather than defending the germline genomes against mobile elements, transposase domestication actually facilitates the accumulation of junk DNA.


Asunto(s)
Cilióforos , Elementos Transponibles de ADN , Edición Génica , Humanos , Cilióforos/genética , Elementos Transponibles de ADN/genética , ADN Protozoario/genética , Células Germinativas/metabolismo , Transposasas/genética , Transposasas/metabolismo
6.
EMBO J ; 41(22): e111839, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36221862

RESUMEN

Small RNAs mediate the silencing of transposable elements and other genomic loci, increasing nucleosome density and preventing undesirable gene expression. The unicellular ciliate Paramecium is a model to study dynamic genome organization in eukaryotic cells, given its unique feature of nuclear dimorphism. Here, the formation of the somatic macronucleus during sexual reproduction requires eliminating thousands of transposon remnants (IESs) and transposable elements scattered throughout the germline micronuclear genome. The elimination process is guided by Piwi-associated small RNAs and leads to precise cleavage at IES boundaries. Here we show that IES recognition and precise excision are facilitated by recruiting ISWI1, a Paramecium homolog of the chromatin remodeler ISWI. ISWI1 knockdown substantially inhibits DNA elimination, quantitatively similar to development-specific sRNA gene knockdowns but with much greater aberrant IES excision at alternative boundaries. We also identify key development-specific sRNA biogenesis and transport proteins, Ptiwi01 and Ptiwi09, as ISWI1 cofactors in our co-immunoprecipitation studies. Nucleosome profiling indicates that increased nucleosome density correlates with the requirement for ISWI1 and other proteins necessary for IES excision. We propose that chromatin remodeling together with small RNAs is essential for efficient and precise DNA elimination in Paramecium.


Asunto(s)
Paramecium , Paramecium/genética , Paramecium/metabolismo , Elementos Transponibles de ADN/genética , Ensamble y Desensamble de Cromatina , Nucleosomas/genética , ADN Protozoario/genética , ADN Protozoario/metabolismo
7.
Protist ; 173(5): 125905, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36027633

RESUMEN

Loxodes is one of the best ecologically characterized ciliate genera with numerous intriguing physiological abilities, including gravity-sensing organelles and nitrate respiration. However, these cells have been considered challenging to cultivate in bulk, and are poorly preserved by conventional fixatives used for fluorescence microscopy. Here we describe methods to grow and harvest Loxodes cells in bulk with liquid soil extract medium, as well as a new fixative called ZFAE (zinc sulfate, formaldehyde, acetic acid, ethanol) that can fix Loxodes cells more effectively than buffered formaldehyde or methanol. We show that ZFAE is compatible with immunofluorescence and the nuclear stain DAPI. Loxodes is thus now amenable to long-term maintenance, large-scale growth, and modern cell biology investigations of monoclonal strains in laboratory conditions.


Asunto(s)
Cilióforos , Metanol , Fijadores , Nitratos , Sulfato de Zinc , Formaldehído , Microscopía Fluorescente , Etanol , Suelo
8.
Cell Rep ; 40(8): 111263, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36001962

RESUMEN

In animal germlines, transposons are silenced at the transcriptional or post-transcriptional level to prevent deleterious expression. Ciliates employ a more direct approach by physically eliminating transposons from their soma, utilizing piRNAs to recognize transposons and imprecisely excise them. Ancient, mutated transposons often do not require piRNAs and are precisely eliminated. Here, we characterize the Polycomb Repressive Complex 2 (PRC2) in Paramecium and demonstrate its involvement in the removal of transposons and transposon-derived DNA. Our results reveal a striking difference between the elimination of new and ancient transposons at the chromatin level and show that the complex may be guided by Piwi-bound small RNAs (sRNAs). We propose that imprecise elimination in ciliates originates from an ancient transposon silencing mechanism, much like in plants and metazoans, through sRNAs, repressive methylation marks, and heterochromatin formation. However, it is taken a step further by eliminating DNA as an extreme form of transposon silencing.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , ADN/metabolismo , Elementos Transponibles de ADN/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Silenciador del Gen , Complejo Represivo Polycomb 2/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
9.
Biochim Biophys Acta Mol Cell Res ; 1869(6): 119239, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35181406

RESUMEN

Developmental DNA elimination in Paramecium tetraurelia occurs through a trans-nuclear comparison of the genomes of two distinct types of nuclei: the germline micronucleus (MIC) and the somatic macronucleus (MAC). During sexual reproduction, which starts with meiosis of the germline nuclei, MIC-limited sequences including Internal Eliminated Sequences (IESs) and transposons are eliminated from the developing MAC in a process guided by noncoding RNAs (scnRNAs and iesRNAs). However, our current understanding of this mechanism is still very limited. Therefore, studying both genetic and epigenetic aspects of these processes is a crucial step to understand this phenomenon in more detail. Here, we describe the involvement of homologs of classical meiotic proteins, Spo11, Msh4-1, and Msh5 in this phenomenon. Based on our analyses, we propose that proper functioning of Spo11, Msh4-1, and Msh5 during Paramecium sexual reproduction are necessary for genome reorganization and viable progeny. Also, we show that double-strand breaks (DSBs) in DNA induced during meiosis by Spo11 are crucial for proper IESs excision. In summary, our investigations show that early sexual reproduction processes may significantly influence later somatic genome integrity.


Asunto(s)
Paramecium tetraurelia , Células Germinativas , Macronúcleo/genética , Macronúcleo/metabolismo , Meiosis/genética , Paramecium tetraurelia/genética , Paramecium tetraurelia/metabolismo , ARN no Traducido/metabolismo
10.
Sci Rep ; 11(1): 18782, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34548559

RESUMEN

The macronuclear (MAC) genomes of ciliates belonging to the genus Euplotes species are comprised of numerous small DNA molecules, nanochromosomes, each typically encoding a single gene. These genomes are responsible for all gene expression during vegetative cell growth. Here, we report the analysis of the MAC genome from the Antarctic psychrophile Euplotes focardii. Nanochromosomes containing bacterial sequences were not found, suggesting that phenomena of horizontal gene transfer did not occur recently, even though this ciliate species has a substantial associated bacterial consortium. As in other euplotid species, E. focardii MAC genes are characterized by a high frequency of translational frameshifting. Furthermore, in order to characterize differences that may be consequent to cold adaptation and defense to oxidative stress, the main constraints of the Antarctic marine microorganisms, we compared E. focardii MAC genome with those available from mesophilic Euplotes species. We focussed mainly on the comparison of tubulin, antioxidant enzymes and heat shock protein (HSP) 70 families, molecules which possess peculiar characteristic correlated with cold adaptation in E. focardii. We found that α-tubulin genes and those encoding SODs and CATs antioxidant enzymes are more numerous than in the mesophilic Euplotes species. Furthermore, the phylogenetic trees showed that these molecules are divergent in the Antarctic species. In contrast, there are fewer hsp70 genes in E. focardii compared to mesophilic Euplotes and these genes do not respond to thermal stress but only to oxidative stress. Our results suggest that molecular adaptation to cold and oxidative stress in the Antarctic environment may not only be due to particular amino acid substitutions but also due to duplication and divergence of paralogous genes.


Asunto(s)
Adaptación Fisiológica , Frío , Euplotes/fisiología , Genoma , Regiones Antárticas , Euplotes/genética
11.
Bioinformatics ; 37(21): 3929-3931, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34487139

RESUMEN

SUMMARY: Ciliates are single-celled eukaryotes that eliminate specific, interspersed DNA sequences (internally eliminated sequences, IESs) from their genomes during development. These are challenging to annotate and assemble because IES-containing sequences are typically much less abundant in the cell than those without, and IES sequences themselves often contain repetitive and low-complexity sequences. Long-read sequencing technologies from Pacific Biosciences and Oxford Nanopore have the potential to reconstruct longer IESs than has been possible with short reads but require a different assembly strategy. Here we present BleTIES, a software toolkit for detecting, assembling, and analyzing IESs using mapped long reads. AVAILABILITY AND IMPLEMENTATION: BleTIES is implemented in Python 3. Source code is available at https://github.com/Swart-lab/bleties (MIT license) and also distributed via Bioconda. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Edición Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Programas Informáticos , Genoma
12.
Elife ; 72018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30223944

RESUMEN

The domestication of transposable elements has repeatedly occurred during evolution and domesticated transposases have often been implicated in programmed genome rearrangements, as remarkably illustrated in ciliates. In Paramecium, PiggyMac (Pgm), a domesticated PiggyBac transposase, carries out developmentally programmed DNA elimination, including the precise excision of tens of thousands of gene-interrupting germline Internal Eliminated Sequences (IESs). Here, we report the discovery of five groups of distant Pgm-like proteins (PgmLs), all able to interact with Pgm and essential for its nuclear localization and IES excision genome-wide. Unlike Pgm, PgmLs lack a conserved catalytic site, suggesting that they rather have an architectural function within a multi-component excision complex embedding Pgm. PgmL depletion can increase erroneous targeting of residual Pgm-mediated DNA cleavage, indicating that PgmLs contribute to accurately position the complex on IES ends. DNA rearrangements in Paramecium constitute a rare example of a biological process jointly managed by six distinct domesticated transposases.


Asunto(s)
ADN Protozoario/genética , Paramecium/genética , Transposasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Núcleo Celular/metabolismo , Técnicas de Silenciamiento del Gen , Genoma de Protozoos , Funciones de Verosimilitud , Modelos Biológicos , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Reproducibilidad de los Resultados , Transposasas/química , Transposasas/genética
13.
Cell Rep ; 20(2): 505-520, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28700949

RESUMEN

Piwi proteins and piRNAs protect eukaryotic germlines against the spread of transposons. During development in the ciliate Paramecium, two Piwi-dependent sRNA classes are involved in the elimination of transposons and transposon-derived DNA: scan RNAs (scnRNAs), associated with Ptiwi01 and Ptiwi09, and iesRNAs, whose binding partners we now identify as Ptiwi10 and Ptiwi11. scnRNAs derive from the maternal genome and initiate DNA elimination during development, whereas iesRNAs continue DNA targeting until the removal process is complete. Here, we show that scnRNAs and iesRNAs are processed by distinct Dicer-like proteins and bind Piwi proteins in a mutually exclusive manner, suggesting separate biogenesis pathways. We also demonstrate that the PTIWI10 gene is transcribed from the developing nucleus and that its transcription depends on prior DNA excision, suggesting a mechanism of gene expression control triggered by the removal of short DNA segments interrupting the gene.


Asunto(s)
ADN Protozoario/genética , ARN Interferente Pequeño/genética , Animales , Núcleo Celular/metabolismo , Elementos Transponibles de ADN/genética , Epigenómica , Regulación del Desarrollo de la Expresión Génica , Genoma de Protozoos/genética , Paramecium/genética , Paramecium/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Interferencia de ARN
14.
Curr Biol ; 27(4): 569-575, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28190732

RESUMEN

The giant, single-celled organism Stentor coeruleus has a long history as a model system for studying pattern formation and regeneration in single cells. Stentor [1, 2] is a heterotrichous ciliate distantly related to familiar ciliate models, such as Tetrahymena or Paramecium. The primary distinguishing feature of Stentor is its incredible size: a single cell is 1 mm long. Early developmental biologists, including T.H. Morgan [3], were attracted to the system because of its regenerative abilities-if large portions of a cell are surgically removed, the remnant reorganizes into a normal-looking but smaller cell with correct proportionality [2, 3]. These biologists were also drawn to Stentor because it exhibits a rich repertoire of behaviors, including light avoidance, mechanosensitive contraction, food selection, and even the ability to habituate to touch, a simple form of learning usually seen in higher organisms [4]. While early microsurgical approaches demonstrated a startling array of regenerative and morphogenetic processes in this single-celled organism, Stentor was never developed as a molecular model system. We report the sequencing of the Stentor coeruleus macronuclear genome and reveal key features of the genome. First, we find that Stentor uses the standard genetic code, suggesting that ciliate-specific genetic codes arose after Stentor branched from other ciliates. We also discover that ploidy correlates with Stentor's cell size. Finally, in the Stentor genome, we discover the smallest spliceosomal introns reported for any species. The sequenced genome opens the door to molecular analysis of single-cell regeneration in Stentor.


Asunto(s)
Cilióforos/genética , Genoma de Protozoos , Intrones/genética , Empalmosomas/metabolismo , Filogenia , Secuenciación Completa del Genoma
15.
Cell ; 166(3): 691-702, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27426948

RESUMEN

The prevailing view of the nuclear genetic code is that it is largely frozen and unambiguous. Flexibility in the nuclear genetic code has been demonstrated in ciliates that reassign standard stop codons to amino acids, resulting in seven variant genetic codes, including three previously undescribed ones reported here. Surprisingly, in two of these species, we find efficient translation of all 64 codons as standard amino acids and recognition of either one or all three stop codons. How, therefore, does the translation machinery interpret a "stop" codon? We provide evidence, based on ribosomal profiling and "stop" codon depletion shortly before coding sequence ends, that mRNA 3' ends may contribute to distinguishing stop from sense in a context-dependent manner. We further propose that such context-dependent termination/readthrough suppression near transcript ends enables genetic code evolution.


Asunto(s)
Codón de Terminación , Código Genético , Terminación de la Transcripción Genética , Aminoácidos/genética , Animales , Bradyrhizobium/genética , Cilióforos/genética , Escarabajos/genética , ARN de Transferencia
16.
Ann N Y Acad Sci ; 1341: 106-14, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25581723

RESUMEN

While there is currently burgeoning interest in the application of the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated genes) to genome editing, it is perhaps not widely appreciated that this is the second discovery of a small RNA (sRNA)-targeted DNA-deletion system. The first sRNA-targeted DNA-deletion system to be discovered, which we call IES/Ias (internal eliminated sequence/IES-associated genes) to contrast with CRISPR/Cas, is found in ciliates, and, like CRISPR/Cas, is thought to serve as a form of immune defense against invasive DNAs. The manner in which the ciliate IES/Ias system functions is distinct from that of the CRISPR/Cas system in archaea and bacteria, and arose independently through a synthesis of RNA interference-derived and DNA-specific molecular components. Despite the major differences between CRISPR/Cas and IES/Ias, both systems face similar conceptual challenges in targeting invasive DNAs. In this review, we focus on the discovery, effects, function, and evolutionary consequences of the IES/Ias system.


Asunto(s)
ADN/genética , Eucariontes/genética , Genoma/genética , ARN Pequeño no Traducido/genética , Eliminación de Secuencia , Archaea/genética , Bacterias/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Evolución Molecular , Modelos Genéticos
17.
PLoS One ; 9(11): e112899, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25397898

RESUMEN

The epigenetic influence of maternal cells on the development of their progeny has long been studied in various eukaryotes. Multicellular organisms usually provide their zygotes not only with nutrients but also with functional elements required for proper development, such as coding and non-coding RNAs. These maternally deposited RNAs exhibit a variety of functions, from regulating gene expression to assuring genome integrity. In ciliates, such as Paramecium these RNAs participate in the programming of large-scale genome reorganization during development, distinguishing germline-limited DNA, which is excised, from somatic-destined DNA. Only a handful of proteins playing roles in this process have been identified so far, including typical RNAi-derived factors such as Dicer-like and Piwi proteins. Here we report and characterize two novel proteins, Pdsg1 and Pdsg2 (Paramecium protein involved in Development of the Somatic Genome 1 and 2), involved in Paramecium genome reorganization. We show that these proteins are necessary for the excision of germline-limited DNA during development and the survival of sexual progeny. Knockdown of PDSG1 and PDSG2 genes affects the populations of small RNAs known to be involved in the programming of DNA elimination (scanRNAs and iesRNAs) and chromatin modification patterns during development. Our results suggest an association between RNA-mediated trans-generational epigenetic signal and chromatin modifications in the process of Paramecium genome reorganization.


Asunto(s)
Genoma de Protozoos , Paramecium/genética , Proteínas Protozoarias/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , ADN Protozoario/genética , ADN Protozoario/metabolismo , Epigénesis Genética , Histonas/metabolismo , Metilación , Microscopía Confocal , Paramecium/crecimiento & desarrollo , Paramecium/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
18.
Nucleic Acids Res ; 42(19): 11952-64, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25270876

RESUMEN

Genome-wide DNA remodelling in the ciliate Paramecium is ensured by RNA-mediated trans-nuclear crosstalk between the germline and the somatic genomes during sexual development. The rearrangements include elimination of transposable elements, minisatellites and tens of thousands non-coding elements called internally eliminated sequences (IESs). The trans-nuclear genome comparison process employs a distinct class of germline small RNAs (scnRNAs) that are compared against the parental somatic genome to select the germline-specific subset of scnRNAs that subsequently target DNA elimination in the progeny genome. Only a handful of proteins involved in this process have been identified so far and the mechanism of DNA targeting is unknown. Here we describe chromatin assembly factor-1-like protein (PtCAF-1), which we show is required for the survival of sexual progeny and localizes first in the parental and later in the newly developing macronucleus. Gene silencing shows that PtCAF-1 is required for the elimination of transposable elements and a subset of IESs. PTCAF-1 depletion also impairs the selection of germline-specific scnRNAs during development. We identify specific histone modifications appearing during Paramecium development which are strongly reduced in PTCAF-1 depleted cells. Our results demonstrate the importance of PtCAF-1 for the epigenetic trans-nuclear cross-talk mechanism.


Asunto(s)
Factor 1 de Ensamblaje de la Cromatina/fisiología , ADN Protozoario/metabolismo , Epigénesis Genética , Proteínas Protozoarias/fisiología , ARN Protozoario/metabolismo , ARN Pequeño no Traducido/metabolismo , Supervivencia Celular , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Histonas/metabolismo , Macronúcleo/metabolismo , Paramecium tetraurelia/genética , Paramecium tetraurelia/crecimiento & desarrollo , Paramecium tetraurelia/metabolismo , Proteínas Protozoarias/metabolismo , Reproducción
19.
Cell ; 158(5): 1187-1198, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25171416

RESUMEN

Programmed DNA rearrangements in the single-celled eukaryote Oxytricha trifallax completely rewire its germline into a somatic nucleus during development. This elaborate, RNA-mediated pathway eliminates noncoding DNA sequences that interrupt gene loci and reorganizes the remaining fragments by inversions and permutations to produce functional genes. Here, we report the Oxytricha germline genome and compare it to the somatic genome to present a global view of its massive scale of genome rearrangements. The remarkably encrypted genome architecture contains >3,500 scrambled genes, as well as >800 predicted germline-limited genes expressed, and some posttranslationally modified, during genome rearrangements. Gene segments for different somatic loci often interweave with each other. Single gene segments can contribute to multiple, distinct somatic loci. Terminal precursor segments from neighboring somatic loci map extremely close to each other, often overlapping. This genome assembly provides a draft of a scrambled genome and a powerful model for studies of genome rearrangement.


Asunto(s)
Reordenamiento Génico , Genoma de Protozoos , Oxytricha/crecimiento & desarrollo , Oxytricha/genética , Núcleo Celular/metabolismo , Cromosomas/metabolismo , Datos de Secuencia Molecular , Oxytricha/citología , Oxytricha/metabolismo
20.
Nucleic Acids Res ; 42(14): 8970-83, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25016527

RESUMEN

During the development of the somatic genome from the Paramecium germline genome the bulk of the copies of ∼45 000 unique, internal eliminated sequences (IESs) are deleted. IES targeting is facilitated by two small RNA (sRNA) classes: scnRNAs, which relay epigenetic information from the parental nucleus to the developing nucleus, and iesRNAs, which are produced and used in the developing nucleus. Why only certain IESs require sRNAs for their removal has been enigmatic. By analyzing the silencing effects of three genes: PGM (responsible for DNA excision), DCL2/3 (scnRNA production) and DCL5 (iesRNA production), we identify key properties required for IES elimination. Based on these results, we propose that, depending on the exact combination of their lengths and end bases, some IESs are less efficiently recognized or excised and have a greater requirement for targeting by scnRNAs and iesRNAs. We suggest that the variation in IES retention following silencing of DCL2/3 is not primarily due to scnRNA density, which is comparatively uniform relative to IES retention, but rather the genetic properties of IESs. Taken together, our analyses demonstrate that in Paramecium the underlying genetic properties of developmentally deleted DNA sequences are essential in determining the sensitivity of these sequences to epigenetic control.


Asunto(s)
ADN Protozoario/metabolismo , Epigénesis Genética , Eliminación de Secuencia , Secuencia de Bases , ADN Protozoario/química , Silenciador del Gen , Genoma de Protozoos , Paramecium/genética , ARN Interferente Pequeño/análisis , ARN Pequeño no Traducido/análisis , Ribonucleasa III/antagonistas & inhibidores , Ribonucleasa III/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA