Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Expert Rev Respir Med ; 18(3-4): 127-143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753449

RESUMEN

INTRODUCTION: Wearing protective face masks and respirators has been a necessity to reduce the transmission rate of respiratory viruses since the outbreak of the coronavirus (COVID-19) disease. Nevertheless, the outbreak has revealed the need to develop efficient air filter materials and innovative anti-microbial protectives. Nanofibrous facemasks, either loaded with antiviral nanoparticles or not, are very promising personal protective equipment (PPE) against pandemic respiratory viruses. AREAS COVERED: In this review, multiple types of face masks and respirators are discussed as well as filtration mechanisms of particulates. In this regard, the limitations of traditional face masks were summarized and the advancement of nanotechnology in developing nanofibrous masks and air filters was discussed. Different methods of preparing nanofibers were explained. The various approaches used for enhancing nanofibrous face masks were covered. EXPERT OPINION: Although wearing conventional face masks can limit viral infection spread to some extent, the world is in great need for more protective face masks. Nanofibers can block viral particles efficiently and can be incorporated into face masks in order to enhance their filtration efficiency. Also, we believe that other modifications such as addition of antiviral nanoparticles can significantly increase the protection power of facemasks.


Asunto(s)
COVID-19 , Máscaras , Nanofibras , Humanos , COVID-19/prevención & control , COVID-19/transmisión , Dispositivos de Protección Respiratoria , SARS-CoV-2 , Antivirales/uso terapéutico , Diseño de Equipo , Pandemias/prevención & control , Equipo de Protección Personal
2.
J Biomol Struct Dyn ; : 1-13, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817536

RESUMEN

Crude or semi-purified extracts of plants can play a significant role as antitumor agents. They were used as stabilizing and reducing agents in the preparation of silver nanoparticles (AgNPs) that allows these particles to have more efficient cytotoxic activity. In the current study, the extract of Marrubium alysson L., a plant of common occurrence in Egypt was used to synthesize AgNPs for the first time, where comparison of anticancer activity of crude and phenolic extracts with the AgNPs were extensively studied against cancer cell lines PC-3 and HCT-116. Interestingly, AgNPs of the crude extract exhibited promising cytotoxicity with IC50 values of 10.4 and 16.3 µg/ml, while AgNPs of the phenolic extract exhibited very potent cytotoxicity with IC50 values of 2.66 and 1.34 µg/ml compared to Doxorubicin (as a standard reference drug) that exhibited IC50 values of 5.13 and 4.36 µg/ml, respectively against the tested cells. Additionally, AgNPs of the phenolic extract induced apoptosis in HCT-116 with a higher ratio than in PC-3 cells. It induced apoptosis in PC-3 cells by 79.3-fold change, while it induced total colon apoptotic cell death by 228.3-fold change compared to untreated control. Finally, the apoptotic activity of AgNPs of the phenolic extract in the treated PC-3 and HCT-116 cells was confirmed using RT-PCR. As a result, AgNPs of the phenolic extract could be considered a promising anticancer candidate through apoptosis-induction.Communicated by Ramaswamy H. Sarma.

3.
Pharmaceutics ; 15(5)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37242737

RESUMEN

BACKGROUND: Using face masks is one of the protective measures to reduce the transmission rate of coronavirus. Its massive spread necessitates developing safe and effective antiviral masks (filters) applying nanotechnology. METHODS: Novel electrospun composites were fabricated by incorporating cerium oxide nanoparticles (CeO2 NPs) into polyacrylonitrile (PAN) electrospun nanofibers that can be used in the future in face masks. The effects of the polymer concentration, applied voltage, and feeding rate during the electrospinning were studied. The electrospun nanofibers were characterized using SEM, XRD, FTIR, and tensile strength testing. The cytotoxic effect of the nanofibers was evaluated in the Vero cell line using the MTT colorimetric assay, and the antiviral activity of the proposed nanofibers was evaluated against the human adenovirus type 5 (ADV-5) respiratory virus. RESULTS: The optimum formulation was fabricated with a PAN concentration of 8%, w/v loaded with 0.25%, w/v CeO2 NPs with a feeding rate of 26 KV and an applied voltage of 0.5 mL/h. They showed a particle size of 15.8 ± 1.91 nm and a zeta potential of -14 ± 0.141 mV. SEM imaging demonstrated the nanoscale features of the nanofibers even after incorporating CeO2 NPs. The cellular viability study showed the safety of the PAN nanofibers. Incorporating CeO2 NPs into these fibers further increased their cellular viability. Moreover, the assembled filter could prevent viral entry into the host cells as well as prevent their replication inside the cells via adsorption and virucidal antiviral mechanisms. CONCLUSIONS: The developed cerium oxide nanoparticles/polyacrylonitrile nanofibers can be considered a promising antiviral filter that can be used to halt virus spread.

4.
Antibiotics (Basel) ; 12(4)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37107069

RESUMEN

Treatment of dermatophytosis is quite challenging. This work aims to investigate the antidermatophyte action of Azelaic acid (AzA) and evaluate its efficacy upon entrapment into transethosomes (TEs) and incorporation into a gel to enhance its application. Optimization of formulation variables of TEs was carried out after preparation using the thin film hydration technique. The antidermatophyte activity of AzA-TEs was first evaluated in vitro. In addition, two guinea pig infection models with Trichophyton (T.) mentagrophytes and Microsporum (M.) canis were established for the in vivo assessment. The optimized formula showed a mean particle size of 219.8 ± 4.7 nm and a zeta potential of -36.5 ± 0.73 mV, while the entrapment efficiency value was 81.9 ± 1.4%. Moreover, the ex vivo permeation study showed enhanced skin penetration for the AzA-TEs (3056 µg/cm2) compared to the free AzA (590 µg/cm2) after 48 h. AzA-TEs induced a greater inhibition in vitro on the tested dermatophyte species than free AzA (MIC90 was 0.01% vs. 0.32% for T. rubrum and 0.032% for T. mentagrophytes and M. canis vs. 0.56%). The mycological cure rate was improved in all treated groups, specially for our optimized AzA-TEs formula in the T. mentagrophytes model, in which it reached 83% in this treated group, while it was 66.76% in the itraconazole and free AzA treated groups. Significant (p < 0.05) lower scores of erythema, scales, and alopecia were observed in the treated groups in comparison with the untreated control and plain groups. In essence, the TEs could be a promising carrier for AzA delivery into deeper skin layers with enhanced antidermatophyte activity.

5.
Int J Pharm ; 636: 122816, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36907278

RESUMEN

The repurposed oral use of spironolactone (SP) as an anti-rosacea drug faces many challenges that hinder its efficacy and compliance. In this study, a topically applied nanofibers (NFs) scaffold was evaluated as a promising nanocarrier that enhances SP activity and avoids the friction routine that exaggerates rosacea patients' inflamed, sensitive skin. SP-loaded poly-vinylpyrrolidone (40% PVP) nanofibers (SP-PVP NFs) were electrospun. Scanning electron microscopy showed that SP-PVP NFs have a smooth homogenous surface with a diameter of about 426.60 nm. Wettability, solid state, and mechanical properties of NFs were evaluated. Encapsulation efficiency and drug loading were 96.34% ± 1.20 and 11.89% ± 0.15, respectively. The in vitro release study showed a higher amount of SP released over pure SP with a controlled release pattern. Ex vivo results showed that the permeated amount of SP from SP-PVP NFs sheets was 4.1 times greater than that of pure SP gel. A higher percentage of SP was retained in different skin layers. Moreover, the in vivo anti-rosacea efficacy of SP-PVP NFs using croton oil challenge showed a significant reduction in erythema score compared to the pure SP. The stability and safety of NFs mats were proved, indicating that SP-PVP NFs are promising carriers of SP.


Asunto(s)
Nanofibras , Humanos , Espironolactona
6.
Sci Rep ; 13(1): 510, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627363

RESUMEN

Anxiety is one of the most prevalent forms of psychopathology that affects millions worldwide. It gained more importance under the pandemic status that resulted in higher anxiety prevalence. Anxiolytic drugs such as benzodiazepines have an unfavorable risk/benefit ratio resulting in a shift toward active ingredients with better safety profile such as the naturally occurring quercetin (QRC). The delivery of QRC is hampered by its low water solubility and low bioavailability. The potential to enhance QRC delivery to the brain utilizing polymeric nanocapsules administered intranasally is investigated in the current study. Polymeric nanocapsules were prepared utilizing the nanoprecipitation technique. The best formula displayed a particle size of 227.8 ± 11.9 nm, polydispersity index of 0.466 ± 0.023, zeta potential of - 17.5 ± 0.01 mV, and encapsulation efficiency % of 92.5 ± 1.9%. In vitro release of QRC loaded polymeric nanocapsules exhibited a biphasic release with an initial burst release followed by a sustained release pattern. Behavioral testing demonstrated the superiority of QRC loaded polymeric nanocapsules administered intranasally compared to QRC dispersion administered both orally and intranasally. The prepared QRC loaded polymeric nanocapsules also demonstrated good safety profile with high tolerability.


Asunto(s)
Nanocápsulas , Quercetina , Polímeros , Benzodiazepinas , Ansiedad/tratamiento farmacológico , Tamaño de la Partícula
7.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36355507

RESUMEN

The current work demonstrates a comparative study between aerial and root parts of Zygophyllum album L. The total phenolic (TPC) and flavonoid content (TFC), in addition to the antioxidant activity, of the crude extracts were investigated, where the aerial parts revealed a higher value overall. By means of UV-VIS and HPLC, rutin and caffeic acid were detected and then quantified as 5.91 and 0.97 mg/g of the plant extract, respectively. Moreover, the biosynthesis of AgNPs utilizing the crude extract of the arial parts and root of Z. album L. and the phenolic extracts was achieved in an attempt to enhance the cytotoxicity of the different plant extracts. The prepared AgNPs formulations were characterized by TEM and zeta potential measurements, which revealed that all of the formulated AgNPs were of a small particle diameter and were highly stable. The mean hydrodynamic particle size ranged from 67.11 to 80.04 nm, while the zeta potential ranged from 29.1 to 38.6 mV. Upon biosynthesis of the AgNPs using the extracts, the cytotoxicity of the tested samples was improved, so the polyphenolics AgNPs of the aerial parts exhibited a potent cytotoxicity against lung A549 and prostate PC-3 cancer cells with IC50 values of 6.1 and 4.36 µg/mL, respectively, compared with Doxorubicin (IC50 values of 6.19 and 5.13 µg/mL, respectively). Regarding the apoptotic activity, polyphenolics AgNPs of the aerial parts induced apoptotic cell death by 4.2-fold in PC-3 and 4.7-fold in A549 cells compared with the untreated control. The mechanism of apoptosis in both cancerous cells appeared to be via the upregulation proapoptotic genes; p53, Bax, caspase 3, 8, and 9, and the downregulation of antiapoptotic gene, Bcl-2. Hence, this formula may serve as a good source for anticancer agents against PC-3 and A549 cells.

8.
Molecules ; 27(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36234842

RESUMEN

Cynara scolymus L. (Family: Compositae) or artichoke is a nutritious edible plant widely used for its hepatoprotective effect. Crude extracts of flower, bract, and stem were prepared and evaluated for their in vitro antioxidant activity and phenolic content. The flower crude extract exhibited the highest phenolic content (74.29 mg GAE/gm) as well as the best in vitro antioxidant activity using total antioxidant capacity (TAC), ferric reducing antioxidant power (FEAP), and 1,1-diphenyl-2-picrylhyazyl (DPPH) scavenging assays compared with ascorbic acid. Phenolic fractions of the crude extracts of different parts were separated and identified using high-performance liquid chromatography HPLC-DAD analysis. The silver nanoparticles of these phenolic fractions were established and tested for their cytotoxicity and apoptotic activity. Results showed that silver nanoparticles of a polyphenolic fraction of flower extract (Nano-TP/Flowers) exhibited potent cytotoxicity against prostate (PC-3) and lung (A549) cancer cell lines with IC50 values of 0.85 µg/mL and 0.94 µg/mL, respectively, compared with doxorubicin as a standard. For apoptosis-induction, Nano-TP/Flowers exhibited apoptosis in PC-3 with a higher ratio than in A549 cells. It induced total prostate apoptotic cell death by 227-fold change while it induced apoptosis in A549 cells by 15.6-fold change. Nano-TP/Flowers upregulated both pro-apoptotic markers and downregulated the antiapoptotic genes using RT-PCR. Hence, this extract may serve as a promising source for anti-prostate cancer candidates.


Asunto(s)
Cynara scolymus , Nanopartículas del Metal , Neoplasias , Antioxidantes/química , Apoptosis , Ácido Ascórbico , Línea Celular , Cynara scolymus/química , Doxorrubicina , Inflorescencia/química , Fenoles/química , Extractos Vegetales/química , Polifenoles/farmacología , Plata
9.
Pharmaceutics ; 14(10)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36297619

RESUMEN

Different parts of Cynara scolymus L. and their green synthesized eco-friendly silver nanoparticles (AgNPs) were screened for their cytotoxicity and apoptotic activity. Results showed that flower extract AgNPs exhibited more potent cytotoxicity compared to the normal form against PC-3 and A549 cell lines with IC50 values of 2.47 µg/mL and 1.35 µg/mL, respectively. The results were compared to doxorubicin (IC50 = 5.13 and 6.19 µg/mL, respectively). For apoptosis-induction, AgNPs prepared from the flower extract induced cell death by apoptosis by 41.34-fold change and induced necrotic cell death by 10.2-fold. Additionally, they induced total prostate apoptotic cell death by a 16.18-fold change, and it slightly induced necrotic cell death by 2.7-fold. Hence, green synthesized flower extract AgNPs exhibited cytotoxicity in A549 and PC-3 through apoptosis-induction in both cells. Consequently, synthesized AgNPs were further tested for apoptosis and increased gene and protein expression of pro-apoptotic markers while decreasing expression of anti-apoptotic genes. As a result, this formula may serve as a promising source for anti-cancer candidates. Finally, liquid chromatography combined with electrospray mass spectrometry (LC-ESI-MS) analysis was assessed to identify the common bioactive metabolites in crude extracts of stem, flower, and bract.

10.
Front Microbiol ; 13: 1078061, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36687608

RESUMEN

Introduction: Diabetes mellitus is a chronic metabolic disorder that exhibited great expansion all over the world. It is becoming an epidemic disease adding a major burden to the health care system, particularly in developing countries. Methods: The plant under investigation in the current study Phragmanthera austroarabica A. G. Mill and J. A. Nyberg is traditionally used in Saudi Arabia for the treatment of diabetes mellitus. The methanolic extract (200 mg/kg) of the plant and pure gallic acid (40 mg/kg), a major metabolite of the plant, as well as their silver nanoparticle formulae (AgNPs) were evaluated for their antidiabetic activity. Results and Discussion: The results showed a decrease in body fat, obesity, an improvement in lipid profiles, normalization of hyperglycemia, insulin resistance, and hyperinsulinemia, and an improvement in liver tissue structure and function. However, the results obtained from AgNPs for both extract and the pure gallic acid were better in most measured parameters. Additionally, the activity of both the crude extract of the plant and its AgNPs were evaluated against a number of gram-positive, gram-negative bacteria and fungi. Although the activity of the crude extract ranged from moderate to weak or even non-active, the AgNPs of the plant extract clearly enhanced the antimicrobial activity. AgNPs of the extract demonstrated remarkable activity, especially against the Gram-negative pathogens Proteus vulgaris (MIC 2.5 µg/ml) and Pseudomonas aeruginosa (MIC 5 µg/ml). Furthermore, a promising antimicrobial activity was shown against the Gram-positive pathogen Streptococcus mutants (MIC 1.25 µg/ml).

11.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535550

RESUMEN

Cancer is a multifactorial disease necessitating identification of novel targets for its treatment. Inhibition of Bcl-2 for triggered pro-apoptotic signaling is considered a promising strategy for cancer treatment. Within the current work, we aimed to design and synthesize a new series of benzimidazole- and indole-based derivatives as inhibitors of Bcl-2 protein. The market pan-Bcl-2 inhibitor, obatoclax, was the lead framework compound for adopted structural modifications. The obatoclax's pyrrolylmethine linker was replaced with straight alkylamine or carboxyhydrazine methylene linkers providing the new compounds. This strategy permitted improved structural flexibility of synthesized compounds adopting favored maneuvers for better fitting at the Bcl-2 major hydrophobic pocket. Anti-cancer activity of the synthesized compounds was further investigated through MTT-cytotoxic assay, cell cycle analysis, RT-PCR, ELISA and DNA fragmentation. Cytotoxic results showed compounds 8a, 8b and 8c with promising cytotoxicity against MDA-MB-231/breast cancer cells (IC50 = 12.69 ± 0.84 to 12.83 ± 3.50 µM), while 8a and 8c depicted noticeable activities against A549/lung adenocarcinoma cells (IC50 = 23.05 ± 1.45 and 11.63 ± 2.57 µM, respectively). The signaling Bcl-2 inhibition pathway was confirmed by molecular docking where significant docking energies and interactions with key Bcl-2 pocket residues were depicted. Moreover, the top active compound, 8b, showed significant upregulated expression levels of pro-apoptotic/anti-apoptotic of genes; Bax, Bcl-2, caspase-3, -8, and -9 through RT-PCR assay. Improving the compound's pharmaceutical profile was undertaken by introducing 8b within drug-solid/lipid nanoparticle formulation prepared by hot melting homogenization technique and evaluated for encapsulation efficiency, particle size, and zeta potential. Significant improvement was seen at the compound's cytotoxic activity. In conclusion, 8b is introduced as a promising anti-cancer lead candidate that worth future fine-tuned lead optimization and development studies while exploring its potentiality through in-vivo preclinical investigation.

12.
Pharmaceutics ; 12(12)2020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33260755

RESUMEN

INTRODUCTION: Several recent studies have shown that the role of cyclooxygenase 2 (COX-2) in carcinogenesis has become more evident. It affects angiogenesis, apoptosis, and invasion, and plays a key role in the production of carcinogens. It has also been reported that COX-2 inhibitors such as celecoxib (CLX) might play an effective role in preventing cancer formation and progression. Formulation of CLX into nanovesicles is a promising technique to improve its bioavailability and anticancer efficacy. AIM: The aim of this study is to optimize and evaluate the anticancer efficacy of CLX-loaded in-situ provesicular powder composed of surfactants and fatty alcohol-based novel nanovesicles in-vitro and determine its pharmacokinetic parameters in-vivo. METHODS: The novel provesicular powders were prepared by the slurry method and optimized by 32 full factorial design using the desirability function. RESULTS: Small mean particle size was achieved by the formed vesicles with value of 351.7 ± 1.76 nm and high entrapment efficacy of CLX in the formed vesicles of 97.53 ± 0.84%. Solid state characterization of the optimized formulation showed that the powder was free flowing, showed no incompatibilities between drug and excipients and showed smooth texture. The cytotoxic study of the optimized formula on HCT-116, HepG-2, A-549, PC-3 and MCF-7 cell lines showed significant increase in activity of CLX compared to its free form. The pharmacokinetic study on albino rabbits after oral administration showed significant increase in the area under the curve (AUC)0-24 h and significantly higher oral relative bioavailability of the optimized formulation compared to Celebrex® 100 mg market product (p < 0.05). CONCLUSION: All findings of this study suggest the potential improvement of efficacy and bioavailability of CLX when formulated in the form of in-situ provesicular powder composed of surfactants and fatty alcohol-based novel nanovesicles for its repositioned use as an anticancer agent.

13.
Pharmaceutics ; 12(5)2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365695

RESUMEN

Drug absorption from the gastrointestinal tract (GIT) is one of the major problems affecting the bioavailability of orally absorbed drugs. This work aims to enhance Fexofenadine HCl oral bioavailability in vivo, the drug used for allergic rhinitis. In this study, novel spray-dried lactose-based enhanced in situ forming vesicles were prepared using different absorption enhancer by the slurry method. Full factorial design was used to obtain an optimized formulation, while central composite design was used to develop economic, environment-friendly analysis method of Fexofenadine HCl in plasma of rabbits. The optimized formulation containing Capryol 90 as absorption enhancer has a mean particle size 202.6 ± 3.9 nm and zeta potential -31.6 ± 0.9 mV. It achieved high entrapment efficiency of the drug 73.7 ± 1.7% and rapid Q3h release reaches 71.5 ± 2.7%. The design-optimized HPLC assay method in rabbit plasma could separate Fexofenadine HCl from endogenous plasma compounds in less than 3.7 min. The pharmacokinetic study and the pharmacological effect of the fexofenadine-loaded optimized formulation showed a significant increase in blood concentration and significantly higher activity against compound 48/80 induced systemic anaphylaxis-like reactions in mice. Therefore, enhanced in situ forming vesicles were effective nanocarriers for the entrapment and delivery of Fexofenadine HCl.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...