Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cancer Discov ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083809

RESUMEN

Conventional immune checkpoint inhibitors (ICI) targeting CTLA-4 elicit durable survival, but primarily in patients with immune-inflamed tumors. Although the mechanisms underlying response to anti-CTLA-4 remain poorly understood, Fc-gamma receptor (FcγR) IIIA co-engagement appears critical for activity, potentially explaining the modest clinical benefits of approved anti-CTLA-4 antibodies. We demonstrate that anti-CTLA-4 engineered for enhanced FcγR affinity leverages FcγR-dependent mechanisms to potentiate T cell responsiveness, reduce intratumoral Tregs, and enhance antigen presenting cell activation. Fc-enhanced anti-CTLA-4 promoted superior efficacy in mouse models and remodeled innate and adaptive immunity versus conventional anti-CTLA-4. These findings extend to patients treated with botensilimab, an Fc-enhanced anti-CTLA-4 antibody, with clinical activity across multiple poorly immunogenic and ICI treatment-refractory cancers. Efficacy was independent of tumor neoantigen burden or FcγRIIIA genotype. However, FcγRIIA and FcγRIIIA expression emerged as potential response biomarkers. These data highlight the therapeutic potential of Fc-enhanced anti-CTLA-4 antibodies in cancers unresponsive to conventional ICI therapy.

3.
Vision Res ; 218: 108379, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38460402

RESUMEN

Mutations in BEST1 cause an autosomal recessive disease in dogs where the earliest changes localize to the photoreceptor-RPE interface and show a retina-wide micro-detachment that is modulated by light exposure. The purpose of this study was to define the spatial and temporal details of the outer retina and its response to light with ultra-high resolution OCT across a range of ages and with different BEST1 mutations. Three retinal regions were selected in each eye: near the fovea-like area, near the optic nerve, both in the tapetal area, and inferior to the optic nerve in the non-tapetal area. The OS+ slab thickness was defined between the peak near the junction of inner and outer segments (IS/OS) and the transition between basal RPE, Bruch membrane, choriocapillaris and proximal tapetum (RPE/T). In wildtype (WT) dogs, two tapetal regions showed additional hyperscattering OCT peaks within the OS+ slab likely representing cone and rod outer segment tips (COST and ROST). The inferior non-tapetal region of WT dogs had only one of these peaks, likely ROST. In dogs with BEST1 mutations, all three locations showed a single peak, likely suggesting optical silence of COST. Light-dependent expansion of the micro-detachment by about 10 um was detectable in both tapetal and non-tapetal retina across all ages and BEST1 mutations.


Asunto(s)
Retina , Tomografía de Coherencia Óptica , Perros , Animales , Células Fotorreceptoras Retinianas Conos , Visión Ocular
4.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38256083

RESUMEN

Modern advances in disease genetics have uncovered numerous modifier genes that play a role in the severity of disease expression. One such class of genetic conditions is known as inherited retinal degenerations (IRDs), a collection of retinal degenerative disorders caused by mutations in over 300 genes. A single missense mutation (K42E) in the gene encoding the enzyme dehydrodolichyl diphosphate synthase (DHDDS), which is required for protein N-glycosylation in all cells and tissues, causes DHDDS-IRD (retinitis pigmentosa type 59 (RP59; OMIM #613861)). Apart from a retinal phenotype, however, DHDDS-IRD is surprisingly non-syndromic (i.e., without any systemic manifestations). To explore disease pathology, we selected five glycosylation-related genes for analysis that are suggested to have disease modifier variants. These genes encode glycosyltransferases (ALG6, ALG8), an ER resident protein (DDOST), a high-mannose oligosaccharyl transferase (MPDU1), and a protein N-glycosylation regulatory protein (TNKS). DNA samples from 11 confirmed DHDDS (K42E)-IRD patients were sequenced at the site of each candidate genetic modifier. Quantitative measures of retinal structure and function were performed across five decades of life by evaluating foveal photoreceptor thickness, visual acuity, foveal sensitivity, macular and extramacular rod sensitivity, and kinetic visual field extent. The ALG6 variant, (F304S), was correlated with greater macular cone disease severity and less peripheral rod disease severity. Thus, modifier gene polymorphisms may account for a significant portion of phenotypic variation observed in human genetic disease. However, the consequences of the polymorphisms may be counterintuitively complex in terms of rod and cone populations affected in different regions of the retina.


Asunto(s)
Transferasas Alquil y Aril , Glucosiltransferasas , Proteínas de la Membrana , Degeneración Retiniana , Humanos , Genes Modificadores , Glucosiltransferasas/genética , Proteínas de la Membrana/genética , Mutación , Retina , Degeneración Retiniana/genética
5.
Invest Ophthalmol Vis Sci ; 64(15): 33, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38133503

RESUMEN

Purpose: Genome editing is an emerging group of technologies with the potential to ameliorate dominant, monogenic human diseases such as late-onset retinal degeneration (L-ORD). The goal of this study was to identify disease stages and retinal locations optimal for evaluating the efficacy of a future genome editing trial. Methods: Twenty five L-ORD patients (age range, 33-77 years; median age, 59 years) harboring the founder variant S163R in C1QTNF5 were enrolled from three centers in the United Kingdom and United States. Patients were examined with widefield optical coherence tomography (OCT) and chromatic perimetry under dark-adapted and light-adapted conditions to derive phenomaps of retinal disease. Results were analyzed with a model of a shared natural history of a single delayed exponential across all subjects and all retinal locations. Results: Critical age for the initiation of photoreceptor loss ranged from 48 years at the temporal paramacular retina to 74 years at the inferior midperipheral retina. Subretinal deposits (sRET-Ds) became more prevalent as critical age was approached. Subretinal pigment epithelial deposits (sRPE-Ds) were detectable in the youngest patients showing no other structural or functional abnormalities at the retina. The sRPE-D thickness continuously increased, reaching 25 µm in the extrafoveal retina and 19 µm in the fovea at critical age. Loss of light sensitivity preceded shortening of outer segments and loss of photoreceptors by more than a decade. Conclusions: Retinal regions providing an ideal treatment window exist across all severity stages of L-ORD.


Asunto(s)
Terapia Genética , Degeneración Retiniana , Humanos , Adulto , Persona de Mediana Edad , Anciano , Enfermedades de Inicio Tardío/genética , Enfermedades de Inicio Tardío/patología , Enfermedades de Inicio Tardío/terapia , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Degeneración Retiniana/terapia , Colágeno/genética , Masculino , Femenino , Fóvea Central/patología , Tomografía de Coherencia Óptica , Terapia Genética/métodos , Edición Génica
6.
Am J Ophthalmol Case Rep ; 32: 101873, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37388818

RESUMEN

Purpose: An intravitreally injected antisense oligonucleotide, sepofarsen, was designed to modulate splicing within retinas of patients with severe vision loss due to deep intronic c.2991 + 1655A > G variant in the CEP290 gene. A previous report showed vision improvements following a single injection in one eye with unexpected durability lasting at least 15 months. The current study evaluated durability of efficacy beyond 15 months in the previously treated left eye. In addition, peak efficacy and durability were evaluated in the treatment-naive right eye, and re-injection of the left eye 4 years after the first injection. Observations: Visual function was evaluated with best corrected standard and low-luminance visual acuities, microperimetry, dark-adapted chromatic perimetry, and full-field sensitivity testing. Retinal structure was evaluated with OCT imaging. At the fovea, all visual function measures and IS/OS intensity of the OCT showed transient improvements peaking at 3-6 months, remaining better than baseline at ∼2 years, and returning to baseline by 3-4 years after each single injection. Conclusions and Importance: These results suggest that sepofarsen reinjection intervals may need to be longer than 2 years.

7.
Vision Res ; 203: 108157, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36450205

RESUMEN

The only approved retinal gene therapy is for biallelic RPE65 mutations which cause a recessive retinopathy with a primary molecular defect located at the retinal pigment epithelium (RPE). For a distinct recessive RPE disease caused by biallelic BEST1 mutations, a pre-clinical proof-of-concept for gene therapy has been demonstrated in canine eyes. The current study was undertaken to consider potential outcome measures for a BEST1 clinical trial in patients demonstrating a classic autosomal recessive bestrophinopathy (ARB) phenotype. Spatial distribution of retinal structure showed a wide expanse of abnormalities including large intraretinal cysts, shallow serous retinal detachments, abnormalities of inner and outer segments, and an unusual prominence of the external limiting membrane. Surrounding the central macula extending from 7 to 30 deg eccentricity, outer nuclear layer was thicker than expected from a cone only retina and implied survival of many rod photoreceptors. Co-localized however, were large losses of rod sensitivity despite preserved cone sensitivities. The dissociation of rod function from rod structure observed, supports a large treatment potential in the paramacular region for biallelic bestrophinopathies.


Asunto(s)
Bestrofinas , Degeneración Retiniana , Animales , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Bestrofinas/genética , Mutación , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Degeneración Retiniana/genética , Degeneración Retiniana/terapia , Humanos
8.
Invest Ophthalmol Vis Sci ; 63(13): 12, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36512348

RESUMEN

Purpose: The purpose of this study was to evaluate rod and cone function and outer retinal structure within macular lesions, and surrounding extralesional areas of patients with autosomal dominant Best vitelliform macular dystrophy caused by BEST1 mutations. Methods: Seventeen patients from seven families were examined with dark- and light-adapted chromatic perimetry and optical coherence tomography. Subsets of patients had long-term follow-up (14-22 years, n = 6) and dark-adaptation kinetics measured (n = 5). Results: Within central lesions with large serous retinal detachments, rod sensitivity was severely reduced but visual acuity and cone sensitivity were relatively retained. In surrounding extralesional areas, there was a mild but detectable widening of the subretinal space in some patients and some retinal areas. Available evidence was consistent with subretinal widening causing slower dark-adaptation kinetics. Over long-term follow-up, some eyes showed formation of de novo satellite lesions at retinal locations that years previously demonstrated subretinal widening. A subclinical abnormality consisting of a retina-wide mild thickening of the outer nuclear layer was evident in many patients and thickening increased in the subset of patients with long-term follow-up. Conclusions: Outcome measures for future clinical trials should include evaluations of rod sensitivity within central lesions and quantitative measures of outer retinal structure in normal-appearing regions surrounding the lesions.


Asunto(s)
Distrofia Macular Viteliforme , Humanos , Distrofia Macular Viteliforme/diagnóstico , Distrofia Macular Viteliforme/genética , Proteínas del Ojo/genética , Tomografía de Coherencia Óptica/métodos , Pruebas del Campo Visual , Mutación , Bestrofinas/genética
9.
iScience ; 25(10): 105274, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36274938

RESUMEN

Signaling of vision to the brain starts with the retinal phototransduction cascade which converts visible light from the environment into chemical changes. Vision impairment results when mutations inactivate proteins of the phototransduction cascade. A severe monogenically inherited blindness, Leber congenital amaurosis (LCA), is caused by mutations in the GUCY2D gene, leading to a molecular defect in the production of cyclic GMP, the second messenger of phototransduction. We studied two patients with GUCY2D-LCA who were undergoing gene augmentation therapy. Both patients had large deficits in rod photoreceptor-based night vision before intervention. Within days of therapy, rod vision in both patients changed dramatically; improvements in visual function and functional vision in these hyper-responding patients reached more than 3 log10 units (1000-fold), nearing healthy rod vision. Quick activation of the complex molecular pathways from retinal photoreceptor to visual cortex and behavior is thus possible in patients even after being disabled and dormant for decades.

10.
Ophthalmol Sci ; 2(2): 100133, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36249682

RESUMEN

Purpose: To understand consequences of reconstituting cone photoreceptor function in congenital binocular blindness resulting from mutations in the centrosomal protein 290 (CEP290) gene. Design: Phase 1b/2 open-label, multicenter, multiple-dose, dose-escalation trial. Participants: A homogeneous subgroup of 5 participants with light perception (LP) vision at the time of enrollment (age range, 15-41 years) selected for detailed analyses. Medical histories of 4 participants were consistent with congenital binocular blindness, whereas 1 participant showed evidence of spatial vision in early life that was later lost. Intervention: Participants received a single intravitreal injection of sepofarsen (160 or 320 µg) into the study eye. Main Outcome Measures: Full-field stimulus testing (FST), visual acuity (VA), and transient pupillary light reflex (TPLR) were measured at baseline and for 3 months after the injection. Results: All 5 participants with LP vision demonstrated severely abnormal FST and TPLR findings. At baseline, FST threshold estimates were 0.81 and 1.0 log cd/m2 for control and study eyes, respectively. At 3 months, study eyes showed a large mean improvement of -1.75 log versus baseline (P < 0.001), whereas untreated control eyes were comparable with baseline. Blue minus red FST values were not different than 0 (P = 0.59), compatible with cone mediation of remnant vision. At baseline, TPLR response amplitude and latency estimates were 0.39 mm and 0.72 seconds, respectively, for control eyes, and 0.28 mm and 0.78 seconds, respectively, for study eyes. At 3 months, study eyes showed a mean improvement of 0.44 mm in amplitude and a mean acceleration of 0.29 seconds in latency versus baseline (P < 0.001), whereas control eyes showed no significant change versus baseline. Specialized tests performed in 1 participant confirmed and extended the standardized results from all 5 participants. Conclusions: By subjective and objective evidence, intravitreal sepofarsen provides improvement of light sensitivity for individuals with LP vision. However, translation of increased light sensitivity to improved spatial vision may occur preferentially in those with a history of visual experience during early neurodevelopment. Interventions for congenital lack of spatial vision in CEP290-associated Leber congenital amaurosis may lead to better results if performed before visual cortex maturity.

12.
Transl Vis Sci Technol ; 10(11): 3, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34473224

RESUMEN

Purpose: To investigate the validity and reliability of macular rod photoreceptor function measurement with a microperimeter. Methods: Macular sensitivity in dark-adapted retinitis pigmentosa (RP) patients (22 eyes; 9-67 years of age) and controls (five eyes; 22-55 years of age) was assessed with a modified Humphrey field analyzer (mHFA), as well as a scotopic microperimeter (Nidek MP-1S). Sensitivity loss (SL) was estimated at rod-mediated locations. All RP eyes were re-evaluated at a second visit 6 months later. The dynamic range of the MP-1S was expanded with a range of neutral-density filters (NDFs). Results: In controls, a 4 NDF was used at all macular locations tested. In patients with RP, 0 to 3 NDFs were used, depending on the local disease severity. At rod-mediated locations (n = 281), SL estimates obtained with the MP-1S were highly correlated (r = 0.80) with those of the mHFA. The inter-perimeter difference of SL averaged less than 3 decibels (dB) with all NDFs, except those with most severe locations evaluated with a 0 NDF, where the difference averaged more than 6 dB. The results were similar on the second visit. Conclusions: The MP-1S estimates of SL are highly correlated with those of the mHFA over a wide range of disease severity replicated at two visits; however, there was an unexplained bias in the magnitude of SL estimated by the MP-1S especially at loci with severe disease. Translational Relevance: MP-1S scotopic microperimetry can be used to evaluate changes to macular rod function, but evaluation of treatment potential by quantitative comparison of SL to retinal structure will be more challenging.


Asunto(s)
Retinitis Pigmentosa , Pruebas del Campo Visual , Humanos , Reproducibilidad de los Resultados , Retina , Retinitis Pigmentosa/diagnóstico
13.
Annu Rev Vis Sci ; 7: 747-772, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34255540

RESUMEN

Inherited retinal diseases (IRDs) are at the forefront of innovative gene-specific treatments because of the causation by single genes, the availability of microsurgical access for treatment delivery, and the relative ease of quantitative imaging and vision measurement. However, it is not always easy to choose a priori, from scores of potential measures, an appropriate subset to evaluate efficacy outcomes considering the wide range of disease stages with different phenotypic features. This article reviews measurements of visual function and retinal structure that our group has used over the past three decades to understand the natural history of IRDs. We include measures of light sensitivity, retinal structure, mapping of natural fluorophores, evaluation of pupillary light reflex, and oculomotor control. We provide historical context and examples of applicability. We also review treatment trial outcomes using these measures of function and structure.


Asunto(s)
Retina , Enfermedades de la Retina , Humanos , Enfermedades de la Retina/terapia , Resultado del Tratamiento , Visión Ocular
14.
Nat Med ; 27(5): 785-789, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33795869

RESUMEN

Leber congenital amaurosis due to CEP290 ciliopathy is being explored by treatment with the antisense oligonucleotide (AON) sepofarsen. One patient who was part of a larger cohort (ClinicalTrials.gov NCT03140969 ) was studied for 15 months after a single intravitreal sepofarsen injection. Concordant measures of visual function and retinal structure reached a substantial efficacy peak near 3 months after injection. At 15 months, there was sustained efficacy, even though there was evidence of reduction from peak response. Efficacy kinetics can be explained by the balance of AON-driven new CEP290 protein synthesis and a slow natural rate of CEP290 protein degradation in human foveal cone photoreceptors.


Asunto(s)
Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular/genética , Ciliopatías/terapia , Proteínas del Citoesqueleto/genética , Terapia Genética/métodos , Amaurosis Congénita de Leber/terapia , Oligonucleótidos Antisentido/uso terapéutico , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciliopatías/genética , Proteínas del Citoesqueleto/metabolismo , Humanos , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/fisiopatología , Células Fotorreceptoras/metabolismo , Visión Ocular/fisiología , Campos Visuales/fisiología
15.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670772

RESUMEN

Gene augmentation therapy is being planned for GUCY2D-associated Leber congenital amaurosis (LCA). To increase our understanding of the natural history of GUCY2D-LCA, patients were evaluated twice with an interval of 4 to 7 years between visits using safety and efficacy outcome measures previously determined to be useful for monitoring this disorder. In this group of molecularly-identified LCA patients (n = 10; ages 7-37 years at first visit), optical coherence tomography (OCT) was used to measure foveal cone outer nuclear layer (ONL) thickness and rod ONL at a superior retinal locus. Full-field stimulus testing (FST) with chromatic stimuli in dark- and light-adapted states was used to assay rod and cone vision. Changes in OCT and FST over the interval were mostly attributable to inter-visit variability. There were no major negative changes in structure or function across the cohort and over the intervals studied. Variation in severity of disease expression between patients occurs; however, despite difficulties in quantifying structure and function in such seriously visually impaired individuals with nystagmus, the present work supports the use of OCT as a safety outcome and FST as an efficacy outcome in a clinical trial of GUCY2D-LCA. A wide age spectrum for therapy was confirmed, and there was relative stability of structure and function during a typical time interval for clinical trials.


Asunto(s)
Guanilato Ciclasa/genética , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/fisiopatología , Receptores de Superficie Celular/genética , Retina/patología , Retina/fisiopatología , Visión Ocular , Adolescente , Adulto , Niño , Fluorescencia , Humanos , Amaurosis Congénita de Leber/diagnóstico por imagen , Retina/diagnóstico por imagen , Células Fotorreceptoras Retinianas Conos/metabolismo , Tomografía de Coherencia Óptica , Adulto Joven
16.
Mol Ther ; 29(8): 2456-2468, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-33781914

RESUMEN

The inherited childhood blindness caused by mutations in NPHP5, a form of Leber congenital amaurosis, results in abnormal development, dysfunction, and degeneration of photoreceptors. A naturally occurring NPHP5 mutation in dogs leads to a phenotype that very nearly duplicates the human retinopathy in terms of the photoreceptors involved, spatial distribution of degeneration, and the natural history of vision loss. We show that adeno-associated virus (AAV)-mediated NPHP5 gene augmentation of mutant canine retinas at the time of active degeneration and peak cell death stably restores photoreceptor structure, function, and vision with either the canine or human NPHP5 transgenes. Mutant cone photoreceptors, which failed to form outer segments during development, reform this structure after treatment. Degenerating rod photoreceptor outer segments are stabilized and develop normal structure. This process begins within 8 weeks after treatment and remains stable throughout the 6-month posttreatment period. In both photoreceptor cell classes mislocalization of rod and cone opsins is minimized or reversed. Retinal function and functional vision are restored. Efficacy of gene therapy in this large animal ciliopathy model of Leber congenital amaurosis provides a path for translation to human treatment.


Asunto(s)
Proteínas de Unión a Calmodulina/administración & dosificación , Dependovirus/genética , Amaurosis Congénita de Leber/terapia , Células Fotorreceptoras Retinianas Conos/patología , Animales , Proteínas de Unión a Calmodulina/farmacología , Modelos Animales de Enfermedad , Perros , Electrorretinografía , Terapia Genética , Vectores Genéticos/administración & dosificación , Humanos , Amaurosis Congénita de Leber/genética , Resultado del Tratamiento
17.
Transl Vis Sci Technol ; 9(13): 13, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33344057

RESUMEN

Purpose: Blue cone monochromacy (BCM), a congenital X-linked retinal disease caused by mutations in the OPN1LW/OPN1MW gene cluster, is under consideration for intravitreal gene therapy. Difficulties with near vision tasks experienced by these patients prompted this study of reading performance as a potential outcome measure for a future clinical trial. Methods: Clinically and molecularly diagnosed patients with BCM (n = 17; ages 15-63 years) and subjects with normal vision (n = 22; ages 18-72 years) were examined with the MNREAD acuity chart for both uniocular and binocular conditions. Parameters derived from the measurements in patients were compared with normal data and also within the group of patients. Intersession, interocular and between-subject variabilities were determined. The frequent complaint of light sensitivity in BCM was examined by comparing results from black text on a white background (regular polarity) versus white on black (reverse polarity) conditions. Results: MNREAD curves of print size versus reading speed were right-shifted compared with normal in all patients with BCM. All parameters in patients with BCM indicated abnormal reading performance. Intersession variability was slightly higher in BCM than in normal, but comparable with results previously reported for other patients with maculopathies. There was a high degree of disease symmetry in reading performance in this BCM cohort. Reverse polarity showed better reading parameters than regular polarity in 82% of the patients. Conclusions: MNREAD measures of reading performance in patients with BCM would be a worthy and robust secondary outcome in a clinical trial protocol, given its dual purpose of quantifying macular vision and addressing an important quality of life issue. Translational Relevance: Assessment of an outcome for a clinical trial.


Asunto(s)
Defectos de la Visión Cromática , Lectura , Adolescente , Adulto , Anciano , Defectos de la Visión Cromática/diagnóstico , Humanos , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Calidad de Vida , Adulto Joven
18.
Sci Rep ; 10(1): 12552, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32724127

RESUMEN

A common inherited retinal disease is caused by mutations in RHO expressed in rod photoreceptors that provide vision in dim ambient light. Approximately half of all RHO mutations result in a Class B phenotype where mutant rods are retained in some retinal regions but show severe degeneration in other regions. We determined the natural history of dysfunction and degeneration of retained rods by serially evaluating patients. Even when followed for more than 20 years, rod function and structure at some retinal locations could remain unchanged. Other locations showed loss of both vision and photoreceptors but the rate of rod vision loss was greater than the rate of photoreceptor degeneration. This unexpected divergence in rates with disease progression implied the development of a rod function deficit beyond loss of cells. The divergence of progression rates was also detectable over a short interval of 2 years near the health-disease transition in the superior retina. A model of structure-function relationship supported the existence of a large rod function deficit which was also most prominent near regions of health-disease transition. Our studies support the realistic therapeutic goal of improved night vision for retinal regions specifically preselected for rod function deficit in patients.


Asunto(s)
Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/genética , Rodopsina/genética , Rodopsina/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Retina/metabolismo , Retina/fisiopatología , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/fisiopatología , Visión Ocular , Adulto Joven
19.
Hum Gene Ther ; 31(13-14): 743-755, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32414297

RESUMEN

Recombinant adeno-associated viral (rAAV) vector-mediated gene therapy is being developed to treat X-linked retinitis pigmentosa (XLRP) in patients with mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. In preparation for a clinical gene therapy trial, we conducted dose range finding (DRF) studies with an AAV2 capsid with three surface tyrosine residues changed to phenylalanine (AAV2tYF) vector administered by subretinal injection in a naturally occurring RPGR-mutant canine model (XLPRA2) to compare two different human RPGR (hRPGR) transgenes and to establish a reasonable starting dose for a clinical trial. Different dose levels of two candidate vectors (0.15 mL at 1.2 × 1010-3.0 × 1012 vg/mL of rAAV2tYF-GRK1-hRPGRco or 4 × 1010-3.0 × 1012 vg/mL of rAAV2tYF-GRK1-hRPGRstb), 6.0 × 1011 vg/mL rAAV5-GRK1-hRPGRco reference vector or Vehicle were subretinally administered, and the dogs were followed for 8 weeks postdose. Ophthalmic examinations, analyses of retinal structure by in vivo imaging using confocal scanning laser ophthalmoscopy (cSLO)/optical coherence tomography (OCT) in the Lower (4.0 × 1010 vg/mL) and Lowest (1.2 × 1010 vg/mL) Doses, immunological responses by cell based assays or enzyme-linked immunosorbent assay, RPGR transgene expression, and reversal of opsin mislocalization by immunohistochemistry were performed. No sustained signs of ocular discomfort or ophthalmic complications were noted in any of the injected eyes except some in the High Dose group (3.0 × 1012 vg/mL), which showed signs of retinal detachment and inflammation. A change in fundus reflectivity suggestive of a rescue effect was seen in the High, Mid (6.0 × 1011 vg/mL), and Low (1.2 × 1011 vg/mL) Dose groups. cSLO/OCT demonstrated qualitative and quantitative evidence of rescue effect in eyes treated with the Lower Dose. Anti-hRPGR antibodies were absent, but neutralizing antibody titers against AAV2 were detected in all animals dosed with rAAV2tYF in an apparent dose-related pattern. RPGR expression was stronger for rAAV2tYF-GRK1-hRPGRco compared to rAAV2tYF-GRK1-hRPGRstb at all dose levels. Subretinal administration of rAAV2tYF-GRK1-hRPGRco and rAAV2tYF-GRK1-hRPGRstb both corrected rod and cone opsin mislocalization, two early markers of disease in the XLPRA2 canine model of RPGR-XLRP. These results support the selection and use of rAAV2tYF-GRK1-hRPGRco (AGTC-501) and guided the initial doses in clinical studies in patients with XLRP caused by RPGR mutations.


Asunto(s)
Dependovirus/genética , Proteínas del Ojo/genética , Enfermedades Genéticas Ligadas al Cromosoma X/terapia , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Mutación , Retinitis Pigmentosa/terapia , Animales , Perros , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Vectores Genéticos/genética , Masculino , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Transgenes
20.
Hum Gene Ther ; 31(3-4): 253-267, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31910043

RESUMEN

Applied Genetic Technologies Corporation (AGTC) is developing a recombinant adeno-associated virus (rAAV) vector AGTC-501, also designated rAAV2tYF-GRK1-hRPGRco, to treat X-linked retinitis pigmentosa (XLRP) in patients with mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. The vector contains a codon-optimized human RPGR cDNA (hRPGRco) driven by a photoreceptor-specific promoter (G protein-coupled receptor kinase 1 [GRK1]), and is packaged in an AAV2 capsid variant with three surface tyrosine residues changed to phenylalanine (AAV2tYF). We conducted a toxicity and efficacy study of this vector administered by subretinal injection in the naturally occurring RPGR mutant (X-linked progressive retinal atrophy 2 [XLPRA2]) dog model. Sixteen RPGR mutant dogs divided into four groups of three to five animals each received either a subretinal injection of 0.07 mL of AGTC-501 at low (1.2 × 1011 vector genome [vg]/mL), mid (6 × 1011 vg/mL), or high dose (3 × 1012 vg/mL), or of vehicle control in the right eye at early-stage disease. The left eye remained untreated. Subretinal injections were well tolerated and were not associated with systemic toxicity. Electroretinography, in vivo retinal imaging, and histological analysis showed rescue of photoreceptor function and structure in the absence of ocular toxicity in the low- and mid-dose treatment groups when compared with the vehicle-treated group. The high-dose group showed evidence of both photoreceptor rescue and posterior segment toxicity. These results support the use of AGTC-501 in clinical studies with patients affected with XLRP caused by RPGR mutations and define the no-observed-adverse-effect level at 6 × 1011 vg/mL.


Asunto(s)
Dependovirus/genética , Proteínas del Ojo/genética , Genes Ligados a X , Terapia Genética , Vectores Genéticos/genética , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Animales , Biomarcadores , Biopsia , Línea Celular , Codón , Perros , Electrorretinografía , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Humanos , Inmunohistoquímica , Mutación , Retinitis Pigmentosa/diagnóstico , Tomografía de Coherencia Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA