Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37486349

RESUMEN

Filamentous actinomycetes, designated SL13 and SL54T, were isolated from pine litter and their taxonomic status resolved using a polyphasic approach. The isolates exhibit chemotaxonomic and morphological properties consistent with their classification in the family Streptomycetaceae. They form extensively branched substrate mycelia bearing aerial hyphae that differentiate into straight chains of cylindrical spores. The whole-organism hydrolysates contain ll-diaminopimelic acid, glucose, mannose and ribose, the predominant isoprenologue is MK-9(H8), the polar lipids are diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylglycerol and glycophospholipids, and the major fatty acids are anteiso-C15 : 0, iso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. Phylogenetic trees based on 16S rRNA gene sequences and multilocus gene sequences of conserved housekeeping genes show that the isolates form a well-supported lineage that is most closely related to Streptomyces parmotrematis NBRC 115203T. All of these strains form a well-defined clade in the multilocus sequence analysis tree together with Streptantibioticus cattleyicolor DSM 46488T, Streptomyces ferralitis DSM 41836T and Streptomyces rubrisoli DSM 42083T. Draft genomes assemblies of the isolates are rich in biosynthetic gene clusters predicted to produce novel specialized metabolites and stress-related genes which provide an insight into how they have adapted to the harsh conditions that prevail in pine litter. Phylogenomically, both isolates belong to the same lineage as the type strains of S. cattleyicolor, S. ferralitis, S. parmotrematis and S. rubrisoli; these relationships are underpinned by high average amino acid identity, average nucleotide identity and genomic DNA-DNA hybridization values. These metrics confirm that isolates SL13 and SL54T belong to a novel species that is most closely related to S. parmotrematis NBRC 115203T and that these strains together with S. ferralitis DSM 41836T, S. rubrisoli DSM 42083T belong to the genus Streptantibioticus. Consequently, it is proposed that the isolates be recognized as a new Streptantibioticus species, Streptantibioticus silvisoli comb. nov., with isolate SL54T (=DSM 111111T=PCM3044T) as the type strain, and that S. ferralitis, S. parmotrematis and S. rubrisoli be transferred to the genus Streptantibioticus as Streptantibioticus ferralitis comb. nov., Streptantibioticus parmotrematis comb. nov. and Streptantibioticus rubrisoli comb. nov. Emended descriptions are given for the genus Streptantibioticus, the family Streptomycetaceae and for Streptomyces iconiensis which was found to be a close relative of the isolates in the 16S rRNA gene sequence analyses. It is also proposed that Streptomyces cocklensis be transferred to the genus Actinacidiphila as Actinacidiphila cocklensis comb. nov based on its position in the MLSA and phylogenomic trees and associated genomic data.


Asunto(s)
Actinobacteria , Streptomyces , Streptomycetaceae , Actinomyces/genética , Filogenia , ARN Ribosómico 16S/genética , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Fosfolípidos/química
2.
Antonie Van Leeuwenhoek ; 115(6): 783-800, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35404014

RESUMEN

A genomic-based polyphasic study was undertaken to establish the taxonomic status and biotechnological and ecological potential of a Streptomyces strain, isolate SF28T, that was recovered from the litter layer in a Polish Pinus sylvestris forest. The isolate had morphological characteristics and chemotaxonomic properties consistent with its classification in the genus Streptomyces. It formed long straight chains of spores with smooth surfaces, contained LL-diaminopimelic acid, glucose and ribose in whole-organism hydrolysates, produced major proportions of straight, iso- and anteiso- fatty acids, hexa- and octa-hydrogenated menaquinones with nine isoprene units and had a polar lipid pattern composed of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, glycophospholipids and three uncharacterized components. Phylogenetic trees prepared using 16S rRNA gene and multilocus gene sequences of conserved housekeeping genes showed that the isolate formed a branch that was loosely associated with the type strains of several validly published Streptomyces species. A draft genome generated for the isolate was rich in natural product-biosynthetic gene clusters with the potential to produce new specialised metabolites, notably antibiotics, and stress related genes which provide an insight into how it may have become adapted to the harsh conditions that prevail in acidic forest soils. A phylogenomic tree based on the genomes of the isolate and its phylogenetic neighbours confirmed that it formed a distinct lineage well separated from its closest evolutionary relatives. The isolate shared low average nucleotide identity and digital DNA:DNA hybridization values with its phylogenomic neighbours and was also distinguished from them using a combination of cultural and micromorphological properties. Given this wealth of taxonomic data it is proposed that isolate SF28T (= DSM 113360 T = PCM 3163 T) be classified in the genus Streptomyces as Streptomyces pinistramenti sp. nov. The isolate showed pronounced antimicrobial activity, especially against fungal plant pathogens.


Asunto(s)
Actinobacteria , Pinus , Streptomyces , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/análisis , Bosques , Filogenia , Polonia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo , Microbiología del Suelo
3.
Front Microbiol ; 13: 1054384, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36741889

RESUMEN

Introduction: Filamentous actinomycetes, notably members of the genus Streptomyces, remain a rich source of new specialized metabolites, especially antibiotics. In addition, they are also a valuable source of anticancer and biocontrol agents, biofertilizers, enzymes, immunosuppressive drugs and other biologically active compounds. The new natural products needed for such purposes are now being sought from extreme habitats where harsh environmental conditions select for novel strains with distinctive features, notably an ability to produce specialized metabolites of biotechnological value. Methods: A culture-based bioprospecting strategy was used to isolate and screen filamentous actinomycetes from three poorly studied extreme biomes. Actinomycetes representing different colony types growing on selective media inoculated with environmental suspensions prepared from high-altitude, hyper-arid Atacama Desert soils, a saline soil from India and from a Polish pine forest soil were assigned to taxonomically predictive groups based on characteristic pigments formed on oatmeal agar. One hundred and fifteen representatives of the colour-groups were identified based on 16S rRNA gene sequences to determine whether they belonged to validly named or to putatively novel species. The antimicrobial activity of these isolates was determined using a standard plate assay. They were also tested for their capacity to produce hydrolytic enzymes and compounds known to promote plant growth while representative strains from the pine forest sites were examined to determine their ability to inhibit the growth of fungal and oomycete plant pathogens. Results: Comparative 16S rRNA gene sequencing analyses on isolates representing the colour-groups and their immediate phylogenetic neighbours showed that most belonged to either rare or novel species that belong to twelve genera. Representative isolates from the three extreme biomes showed different patterns of taxonomic diversity and characteristic bioactivity profiles. Many of the isolates produced bioactive compounds that inhibited the growth of one or more strains from a panel of nine wild strains in standard antimicrobial assays and are known to promote plant growth. Actinomycetes from the litter and mineral horizons of the pine forest, including acidotolerant and acidophilic strains belonging to the genera Actinacidiphila, Streptacidiphilus and Streptomyces, showed a remarkable ability to inhibit the growth of diverse fungal and oomycete plant pathogens. Discussion: It can be concluded that selective isolation and characterization of dereplicated filamentous actinomyctes from several extreme biomes is a practical way of generating high quality actinomycete strain libraries for agricultural, industrial and medical biotechnology.

4.
Int J Syst Evol Microbiol ; 71(10)2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34672920

RESUMEN

The taxonomic status of two filamentous actinobacteria, isolates NF23 and NL8T, recovered from the litter layer of a pine forest soil in Poland was established in a genome-based polyphasic study. The isolates showed a combination of chemotaxonomic, morphological and physiological properties associated with their classification in the genus Catenulispora. They formed a well supported lineage within the Catenulispora 16S rRNA gene tree and were most closely related to the type strains of Catenulispora acidiphila (99.1%), Catenulispora pinisilvae (99.9 %) and Catenulispora rubra (99.1 %), and like them, were found to have large genomes (10.8 and 11.5 Mbp, respectively). A phylogenomic tree based on the draft genomes of isolates NF23 and NL8T and their phylogenetic neighbours showed that they formed a distinct branch in the Catenulispora clade that was most closely related to C. pinisilvae DSM 111109T. The isolates shared a combination of genomic, genotypic and phenotypic features, and had high average nucleotide index (ANI) and digital DNA:DNA hybridization (dDDH) similarities consistent with their assignment to the same species. The isolates were distinguished from the C. acidiphila, C. pinisilvae and C. rubra strains by a wealth of taxonomic data and by low ANI (84.9-93.9 %) and dDDH (29.6-54.7 %) values. It is proposed that the isolates be classified in the genus Catenulispora as C. pinistramenti sp. nov. with isolate NL8T (=DSM 111110T=PCM 3045T) as the type strain. The genomes of strains NF23 and NL8T are rich in natural product-biosynthetic gene clusters hence these strains have the potential to synthesize new specialised metabolites.


Asunto(s)
Actinobacteria , Filogenia , Microbiología del Suelo , Actinobacteria/clasificación , Actinobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Bosques , Hibridación de Ácido Nucleico , Polonia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
5.
Syst Appl Microbiol ; 44(1): 126164, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33360072

RESUMEN

Two actinobacteria, strains NF3 and NH11T, isolated from a pine forest soil, near Torun, Poland were examined for diverse chemotaxonomic and morphological properties that placed them in the genus Catenulispora. They produced an extensively branched stable mycelium, contained LL-diaminopimelic acid as the diamino acid of the peptidoglycan, arabinose as the diagnostic whole-organism sugar, tetra-, hexa- and octa-hydrogenated menaquinones with nine isoprenoid units as the predominant isoprenologues, iso-C16:0 and anteiso-C17:0 as major fatty acids, and formed a well supported clade within the Catenulispora 16S rRNA gene tree together with Catenulispora acidiphila DSM 44928T and Catenulispora rubra DSM 44948T sharing sequence similarities with the latter of 98.8 and 99.0%, respectively. The sizes of whole genome sequences generated for the isolates and the C. rubra strain ranged from 11.20 to 12.80 Mbp with corresponding in silico DNA G+C values of 69.9-70.0%. The isolates and the C. acidiphila and C. rubra strains formed a well supported branch in the actinobacterial phylogenomic tree. Isolates NF3 and NH11T belong to the same species as they have identical 16S rRNA gene sequences, share many chemotaxonomic, cultural and phenotypic features and show very high average nucleotide identity (ANI) and digital DNA:DNA relatedness (dDDH) similarities. They can be distinguished from their closest phylogenomic neighbours by using a combination of chemotaxonomic and phenotypic properties and by ANI and dDDH values well below the thresholds of these metrics used to assign closely related strains to different species. Consequently, we propose that the isolates be classified as a new Catenulispora species, Catenulispora pinisilvae sp. nov., the type strain is NH11T (=DSM 111109T =PCM 3046T). An emended description is given for C. rubra based on data acquired in the present study. Analyses of the draft genomes of the isolates and the C. acidiphila and C. rubra strains revealed the presence of many biosynthetic gene clusters with the potential to synthesize novel drug-like metabolites. In vitro screens showed that the isolates inhibited the growth of Gram-positive bacteria and wheat pathogens belonging to the genus Fusarium.


Asunto(s)
Actinobacteria/clasificación , Bosques , Filogenia , Microbiología del Suelo , Actinobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Peptidoglicano/química , Pinus , Polonia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
6.
Syst Appl Microbiol ; 43(6): 126153, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33161356

RESUMEN

A polyphasic study was undertaken to establish the taxonomic position of six representative streptomycetes isolated from an alkaline soil adjacent to a meteoric alkaline soda lake in India. Chemotaxonomic, cultural and morphological properties of the isolates were consistent with their classification in the genus Streptomyces. The isolates formed extensively branched substrate mycelia and aerial hyphae that differentiated in straight chains of spores with smooth surfaces. They contained LL-diaminopimelic acid in the wall peptidoglycan, produced either hexa- or octa-hydrogenated menaquinones with nine isoprene units, major amounts of saturated, iso- and anteiso- fatty acids and phosphatidylethanolamine as the characteristic polar lipid. The isolates grew well at 30 °C, pH 9 and in the presence of 3 to 5% (w/v) sodium chloride. Isolates OF1T, OF3 and OF8 formed a distinct clade within the Streptomyces 16S rRNA gene tree sharing relatively high sequence similarities with the type strains of Streptomyces durbertensis (99.3%), Streptomyces palmae (98.1%) and Streptomyces xinghaiensis (98.3%), but can be distinguished from them using combinations of phenotypic properties. A phylogenomic tree based on draft genome sequences of the isolates and S. durbertensis DSM 104538T confirmed the phylogenetic relationships. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values calculated from the whole genome sequences of isolate OF1T and S. durbertensis DSM 104538T were low at 92.0% and 45.2%, respectively, indicating that they belong to different genomic species. Consequently, on the basis of the genomic, phylogenetic and associated phenotypic data it is proposed that isolates OF1T, OF3 and OF8 be assigned to the genus Streptomyces as Streptomyces alkaliterrae sp. nov. with strain OF1T (NCIMB 15195T =PCM 3001T) as the type strain. Isolates IF11, IF17 and IF19, and S. alkaliphilus DSM 42118T were shown to belong to the same taxospecies and together with S. calidiresistens DSM 42108T comprised a well supported clade in the Streptomyces 16S rRNA gene tree. Isolate IF17 and S. alkaliphilus DSM 42118T formed a well-supported clade in the phylogenomic tree, had almost identical digital G + C similarity values, produced long straight chains of smooth-surfaced spores and shared ANI and dDDH values (98.0 and 79.6%, respectively) consistent with their assignment to the same genomic species. In light of all of the data isolates IF11, IF17 and IF19 should be seen as authentic stains of S. alkalihilus. Data acquired in the present study have also been used to emend the descriptions of S. alkaliphilus, S. calidiresistens and S. durbertensis. The genomes of isolates IF17, and OF1T, OF3 and OF8 contain relatively high numbers of biosynthetic gene clusters some of which were discontinously distributed indicating ones predicted to express for novel specialised metabolites.


Asunto(s)
Filogenia , Microbiología del Suelo , Streptomyces/clasificación , Álcalis , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Concentración de Iones de Hidrógeno , India , Lagos , Hibridación de Ácido Nucleico , Peptidoglicano/química , Fosfatidiletanolaminas/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Streptomyces/aislamiento & purificación , Vitamina K 2/química
7.
Int J Syst Evol Microbiol ; 70(5): 3513-3527, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32374252

RESUMEN

Three presumptive Modestobacter strains isolated from a high altitude Atacama Desert soil were the subject of a polyphasic study. The isolates, strains 1G4T, 1G51 and 1G52, were found to have chemotaxonomic and morphological properties that were consistent with their assignment to the genus Modestobacter. They formed a well supported clade in Modestobacter 16S rRNA gene trees and were most closely related to the type strain of 'Modestobacter excelsi' (99.8-99.9% similarity). They were also closely related to the type strains of Modestobacter caceresii (99.6 % similarity), Modestobacter italicus (99.7-99.9% similarity), Modestobacter lacusdianchii (98.4-99.2% similarity), Modestobacter marinus (99.4-99.5% similarity) and Modestobacter roseus (99.3-99.5% similarity), but were distinguished from their closest relatives by a combination of phenotypic features. Average nucleotide identity and digital DNA:DNA hybridization similarities drawn from comparisons of draft genome sequences of isolate 1G4T and its closest phylogenetic neighbours mentioned above, were well below the threshold used to assign closely related strains to the same species. The close relationship between isolate 1G4T and the type strain of M. excelsi was showed in a phylogenomic tree containing representative strains of family Geodermatophilaceae. The draft genome sequence of isolate 1G4T (size 5.18 Kb) was shown to be rich in stress related genes providing further evidence that the abundance of Modestobacter propagules in Atacama Desert habitats reflects their adaptation to the harsh environmental conditions prevalent in this biome. In light of all of these data it is proposed that the isolates be assigned to a novel species in the genus Modestobacter. The name proposed for this taxon is Modestobacter altitudinis sp. nov., with isolate 1G4T (=DSM 107534T=PCM 3003T) as the type strain.


Asunto(s)
Actinobacteria/clasificación , Clima Desértico , Filogenia , Microbiología del Suelo , Actinobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , Chile , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
8.
Syst Appl Microbiol ; 43(1): 126051, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31892483

RESUMEN

A polyphasic study was undertaken to establish the taxonomic status of three Modestobacter strains isolated from a high altitude Atacama Desert soil. The isolates, strains 1G6T, 1G14 and 1G50, showed chemotaxonomic and morphological properties characteristic of members of the genus Modestobacter. The peptidoglycan contained meso-diaminopimelic acid, the whole cell sugars were glucose and ribose (diagnostic sugars) and arabinose, the predominant menaquinone was MK-9(H4), polar lipid patterns contained diphosphatidylglycerol, glycophosphatidylinositol, phosphatidylethanolamine (diagnostic component), phosphatidylglycerol and phosphatidylinositol while whole cellular fatty acid profiles consisted of complex mixtures of saturated, unsaturated iso- and anteiso-components. The isolates were shown to have different BOX-PCR fingerprint and physiological profiles. They formed a distinct phyletic line in Modestobacter 16S rRNA gene trees, were most closely related to the type strain of Modestobacter italicus (99.9 % similarity) but were distinguished from this and other closely related Modestobacter type strains using a combination of phenotypic properties. Average nucleotide identity and digital DNA:DNA hybridization similarities between the draft genome sequences of isolate 1G6T and M. italicus BC 501T were 90.9 % and 42.3 %, respectively, indicating that they belong to different species. Based on these phenotypic and genotypic data it is proposed that the isolates be assigned to a novel species in the genus Modestobacter, namely as Modestobacter excelsi with isolate 1G6T (=DSM 107535T =PCM 3004T) as the type strain. Analysis of the whole genome sequence of M. excelsi 1G6T (genome size of 5.26 Mb) showed the presence of genes and gene clusters that encode for properties that are in tune with its adaptation to extreme environmental conditions that prevail in the Atacama Desert biome.


Asunto(s)
Actinobacteria/clasificación , Actinobacteria/fisiología , Clima Desértico , Microbiología del Suelo , Actinobacteria/química , Actinobacteria/citología , Altitud , ADN Bacteriano/genética , Ácidos Grasos/análisis , Genoma Bacteriano/genética , Hibridación de Ácido Nucleico , Peptidoglicano/química , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Especificidad de la Especie , Estrés Fisiológico/genética , Vitamina K 2/química
9.
World J Microbiol Biotechnol ; 34(2): 23, 2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-29305718

RESUMEN

We report synthesis of silver nanoparticles (AgNPs) from Streptomyces xinghaiensis OF1 strain, which were characterised by UV-Vis and Fourier transform infrared spectroscopy, Zeta sizer, Nano tracking analyser, and Transmission electron microscopy. The antimicrobial activity of AgNPs alone, and in combination with antibiotics was evaluated against bacteria, namely Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis, and yeasts viz., Candida albicans and Malassezia furfur by using micro-dilution method. The minimum inhibitory concentration (MIC) and minimum biocidal concentration of AgNPs against bacterial and yeast strains were determined. Synergistic effect of AgNPs in combination with antibacterial and antifungal antibiotics was determined by FIC index. In addition, MTT assay was performed to study cytotoxicity of AgNPs alone and in combination with antibiotics against mouse fibroblasts and HeLa cell line. Biogenic AgNPs were stable, spherical, small, polydispersed and capped with organic compounds. The variable antimicrobial activity of AgNPs was observed against tested bacteria and yeasts. The lowest MIC (16 µg ml-1) of AgNPs was found against P. aeruginosa, followed by C. albicans and M. furfur (both 32 µg ml-1), B. subtilis and E. coli (both 64 µg ml-1), and then S. aureus and Klebsiella pneumoniae (256 µg ml-1). The high synergistic effect of antibiotics in combination with AgNPs against tested strains was found. The in vitro cytotoxicity of AgNPs against mouse fibroblasts and cancer HeLa cell lines revealed a dose dependent potential. The IC50 value of AgNPs was found in concentrations of 4 and 3.8 µg ml-1, respectively. Combination of AgNPs and antibiotics significantly decreased concentrations of both antimicrobials used and retained their high antibacterial and antifungal activity. The synthesis of AgNPs using S. xinghaiensis OF1 strain is an eco-friendly, cheap and nontoxic method. The antimicrobial activity of AgNPs could result from their small size. Remarkable synergistic effect of antibiotics and AgNPs offer their valuable potential in nanomedicine for clinical application as a combined therapy in the future.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Nanopartículas del Metal/química , Plata/química , Streptomyces/metabolismo , Animales , Antibacterianos/farmacología , Antifúngicos/farmacología , Bacillus subtilis/efectos de los fármacos , Candida albicans/citología , Candida albicans/efectos de los fármacos , Sinergismo Farmacológico , Escherichia coli/citología , Escherichia coli/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Células HeLa/efectos de los fármacos , Humanos , India , Klebsiella pneumoniae/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Pseudomonas aeruginosa/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/citología , Staphylococcus aureus/efectos de los fármacos , Streptomyces/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...