Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Mol Psychiatry ; 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38503930

Baicalin is a flavone glycoside derived from flowering plants belonging to the Scutellaria genus. Previous studies have reported baicalin's anti-inflammatory and neuroprotective properties in rodent models, indicating the potential of baicalin in neuropsychiatric disorders where alterations in numerous processes are observed. However, the extent of baicalin's therapeutic effects remains undetermined in a human cell model, more specifically, neuronal cells to mimic the brain environment in vitro. As a proof of concept, we treated C8-B4 cells (murine cell model) with three different doses of baicalin (0.1, 1 and 5 µM) and vehicle control (DMSO) for 24 h after liposaccharide-induced inflammation and measured the levels of TNF-α in the medium by ELISA. NT2-N cells (human neuronal-like cell model) underwent identical baicalin treatment, followed by RNA extraction, genome-wide mRNA expression profiles and gene set enrichment analysis (GSEA). We also performed neurite outgrowth assays and mitochondrial flux bioanalysis (Seahorse) in NT2-N cells. We found that in C8-B4 cells, baicalin at ≥ 1 µM exhibited anti-inflammatory effects, lowering TNF-α levels in the cell culture media. In NT2-N cells, baicalin positively affected neurite outgrowth and transcriptionally up-regulated genes in the tricarboxylic acid cycle and the glycolysis pathway. Similarly, Seahorse analysis showed increased oxygen consumption rate in baicalin-treated NT2-N cells, an indicator of enhanced mitochondrial function. Together, our findings have confirmed the neuroprotective and mitochondria enhancing effects of baicalin in human-neuronal like cells. Given the increased prominence of mitochondrial mechanisms in diverse neuropsychiatric disorders and the paucity of mitochondrial therapeutics, this suggests the potential therapeutic application of baicalin in human neuropsychiatric disorders where these processes are altered.

2.
Bipolar Disord ; 25(8): 661-670, 2023 12.
Article En | MEDLINE | ID: mdl-36890661

OBJECTIVES: The aim of this study was to repurpose a drug for the treatment of bipolar depression. METHODS: A gene expression signature representing the overall transcriptomic effects of a cocktail of drugs widely prescribed to treat bipolar disorder was generated using human neuronal-like (NT2-N) cells. A compound library of 960 approved, off-patent drugs were then screened to identify those drugs that affect transcription most similar to the effects of the bipolar depression drug cocktail. For mechanistic studies, peripheral blood mononuclear cells were obtained from a healthy subject and reprogrammed into induced pluripotent stem cells, which were then differentiated into co-cultured neurons and astrocytes. Efficacy studies were conducted in two animal models of depressive-like behaviours (Flinders Sensitive Line rats and social isolation with chronic restraint stress rats). RESULTS: The screen identified trimetazidine as a potential drug for repurposing. Trimetazidine alters metabolic processes to increase ATP production, which is thought to be deficient in bipolar depression. We showed that trimetazidine increased mitochondrial respiration in cultured human neuronal-like cells. Transcriptomic analysis in induced pluripotent stem cell-derived neuron/astrocyte co-cultures suggested additional mechanisms of action via the focal adhesion and MAPK signalling pathways. In two different rodent models of depressive-like behaviours, trimetazidine exhibited antidepressant-like activity with reduced anhedonia and reduced immobility in the forced swim test. CONCLUSION: Collectively our data support the repurposing of trimetazidine for the treatment of bipolar depression.


Bipolar Disorder , Trimetazidine , Rats , Humans , Animals , Trimetazidine/pharmacology , Trimetazidine/therapeutic use , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Transcriptome , Drug Repositioning , Leukocytes, Mononuclear , Disease Models, Animal
3.
Int J Mol Sci ; 23(13)2022 Jun 28.
Article En | MEDLINE | ID: mdl-35806181

Altered protein synthesis has been implicated in the pathophysiology of several neuropsychiatric disorders, particularly schizophrenia. Ribosomes are the machinery responsible for protein synthesis. However, there remains little information on whether current psychotropic drugs affect ribosomes and contribute to their therapeutic effects. We treated human neuronal-like (NT2-N) cells with amisulpride (10 µM), aripiprazole (0.1 µM), clozapine (10 µM), lamotrigine (50 µM), lithium (2.5 mM), quetiapine (50 µM), risperidone (0.1 µM), valproate (0.5 mM) or vehicle control for 24 h. Transcriptomic and gene set enrichment analysis (GSEA) identified that the ribosomal pathway was altered by these drugs. We found that three of the eight drugs tested significantly decreased ribosomal gene expression, whilst one increased it. Most changes were observed in the components of cytosolic ribosomes and not mitochondrial ribosomes. Protein synthesis assays revealed that aripiprazole, clozapine and lithium all decreased protein synthesis. Several currently prescribed psychotropic drugs seem to impact ribosomal gene expression and protein synthesis. This suggests the possibility of using protein synthesis inhibitors as novel therapeutic agents for neuropsychiatric disorders.


Antipsychotic Agents , Clozapine , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Aripiprazole , Benzodiazepines/therapeutic use , Clozapine/therapeutic use , Humans , Lithium , Olanzapine , Psychotropic Drugs/pharmacology , Psychotropic Drugs/therapeutic use , Quetiapine Fumarate , Ribosomes
4.
Am J Physiol Endocrinol Metab ; 323(3): E242-E253, 2022 09 01.
Article En | MEDLINE | ID: mdl-35793481

The aim of the present study was to investigate the fiber type-specific abundance of autophagy-related proteins after an overnight fast and following ingestion of a mixed meal in human skeletal muscle. Twelve overweight, healthy young male volunteers underwent a 3-h mixed meal tolerance test following an overnight fast. Blood samples were collected in the overnight-fasted state and throughout the 180-min postmeal period. Skeletal muscle biopsies were collected in the fasted state, and at 30 and 90 min after meal ingestion. Protein content of key autophagy markers and upstream signaling responses were measured in whole muscle and pooled single fibers using immunoblotting. In the fasted state, type I fibers displayed lower LC3B-I but higher LC3B-II abundance and higher LC3B-II/LC3B-I ratio compared with type II fibers (P < 0.05). However, there were no fiber type differences in p62/SQSTM1, unc-51 like autophagy activating kinase (ULK1), ATG5, or ATG12 (P > 0.05). Compared with the fasted state, there was a reduction in LC3B-II abundance, indicative of lower autophagosome content, in whole muscle and in both type I and type II fibers following meal ingestion (P < 0.05). This reduction in autophagosome content occurred alongside similar increases in p-AktS473 and p-mTORS2448 in both type I and type II muscle fibers (P < 0.05). In human skeletal muscle, type I fibers have a greater autophagosome content than type II fibers in the overnight-fasted state despite comparable abundance of other key upstream autophagy proteins. Autophagy is rapidly inhibited in both fiber types following the ingestion of a mixed meal.NEW & NOTEWORTHY This study examined the fiber type-specific content of key autophagy proteins in human muscle. We showed that markers of autophagosome content are higher in type I fibers in the overnight-fasted state, whereas autophagy is rapidly inhibited in both type I and type II fibers after the ingestion of a mixed meal.


Autophagy , Muscle, Skeletal , Autophagosomes , Eating , Humans , Male , Muscle Fibers, Skeletal
5.
Biochem Biophys Res Commun ; 534: 533-539, 2021 01 01.
Article En | MEDLINE | ID: mdl-33261883

OBJECTIVE: To investigate the effect of high fat diet-induced insulin resistance on autophagy markers in the liver and skeletal muscle of mice in the fasted state and following an oral glucose bolus. METHODS: Forty C57BL/6J male mice were fed either a high fat, high sucrose (HFSD, n = 20) or standard chow control (CON, n = 20) diet for 16 weeks. Upon trial completion, mice were gavaged with water or glucose and skeletal muscle and liver were collected 15 min post gavage. Protein abundance and gene expression of autophagy markers and activation of related signalling pathways were assessed. RESULTS: Compared to CON, the HFSD intervention increased LC3B-II and p62/SQSTM1 protein abundance in the liver which is indicative of elevated autophagosome content via reduced clearance. These changes coincided with inhibitory autophagy signalling through elevated p-mTOR S2448 and p-ULK1S758. HFSD did not alter autophagy markers in skeletal muscle. Administration of an oral glucose bolus had no effect on autophagy markers or upstream signalling responses in either tissue regardless of diet. CONCLUSION: HFSD induces tissue-specific autophagy impairments, with autophagosome accumulation indicating reduced lysosomal clearance in the liver. In contrast, autophagy markers were unchanged in skeletal muscle, indicating that autophagy is not involved in the development of skeletal muscle insulin resistance.


Autophagy , Insulin Resistance , Lipid Metabolism , Muscle, Skeletal/metabolism , Animals , Diet, Carbohydrate Loading/adverse effects , Diet, High-Fat/adverse effects , Liver/metabolism , Male , Mice, Inbred C57BL
6.
Diabetes Obes Metab ; 19(7): 936-943, 2017 07.
Article En | MEDLINE | ID: mdl-28155245

AIM: To determine the effect of Scriptaid, a compound that can replicate aspects of the exercise adaptive response through disruption of the class IIa histone deacetylase (HDAC) corepressor complex, on muscle insulin action in obesity. MATERIALS AND METHODS: Diet-induced obese mice were administered Scriptaid (1 mg/kg) via daily intraperitoneal injection for 4 weeks. Whole-body and skeletal muscle metabolic phenotyping of mice was performed, in addition to echocardiography, to assess cardiac morphology and function. RESULTS: Scriptaid treatment had no effect on body weight or composition, but did increase energy expenditure, supported by increased lipid oxidation, while food intake was also increased. Scriptaid enhanced the expression of oxidative genes and proteins, increased fatty acid oxidation and reduced triglycerides and diacylglycerides in skeletal muscle. Furthermore, ex vivo insulin-stimulated glucose uptake by skeletal muscle was enhanced. Surprisingly, heart weight was reduced in Scriptaid-treated mice and was associated with enhanced expression of genes involved in oxidative metabolism in the heart. Scriptaid also improved indices of both diastolic and systolic cardiac function. CONCLUSION: These data show that pharmacological targeting of the class IIa HDAC corepressor complex with Scriptaid could be used to enhance muscle insulin action and cardiac function in obesity.


Cardiotonic Agents/therapeutic use , Energy Metabolism/drug effects , Heart/drug effects , Histone Deacetylase Inhibitors/therapeutic use , Hydroxylamines/therapeutic use , Muscle, Skeletal/drug effects , Obesity/drug therapy , Quinolines/therapeutic use , Animals , Anti-Obesity Agents/adverse effects , Anti-Obesity Agents/therapeutic use , Cardiotonic Agents/adverse effects , Diet, High-Fat/adverse effects , Echocardiography , Echocardiography, Doppler , Gene Expression Profiling , Gene Expression Regulation/drug effects , Heart/diagnostic imaging , Heart/physiopathology , Histone Deacetylase 2/antagonists & inhibitors , Histone Deacetylase 2/metabolism , Histone Deacetylase Inhibitors/adverse effects , Hydroxylamines/adverse effects , Insulin Resistance , Male , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Myocardium/pathology , Obesity/etiology , Obesity/pathology , Obesity/physiopathology , Organ Size , Quinolines/adverse effects
7.
FASEB J ; 28(8): 3384-95, 2014 Aug.
Article En | MEDLINE | ID: mdl-24732133

Some gene deletions or mutations have little effect on metabolism and metabolic adaptation because of redundancy and/or compensation in metabolic pathways. The mechanisms for redundancy and/or compensation in metabolic adaptation in mammalian cells are unidentified. Here, we show that in mouse muscle and myogenic cells, compensatory regulation of the histone deacetylase (HDAC5) transcriptional repressor maintains metabolic integrity. HDAC5 phosphorylation regulated the expression of diverse metabolic genes and glucose metabolism in mouse C2C12 myogenic cells. However, loss of AMP-activated protein kinase (AMPK), a HDAC5 kinase, in muscle did not affect HDAC5 phosphorylation in mouse skeletal muscle during exercise, but resulted in a compensatory increase (32.6%) in the activation of protein kinase D (PKD), an alternate HDAC5 kinase. Constitutive PKD activation in mouse C2C12 myogenic cells regulated metabolic genes and glucose metabolism. Although aspects of this response were HDAC5 phosphorylation dependent, blocking HDAC5 phosphorylation when PKD was active engaged an alternative compensatory adaptive mechanism, which involved post-transcriptional reductions in HDAC5 mRNA (-93.1%) and protein. This enhanced the expression of a specific subset of metabolic genes and mitochondrial metabolism. These data show that compensatory regulation of HDAC5 maintains metabolic integrity in mammalian cells and reinforces the importance of preserving the cellular metabolic adaptive response.


Adaptation, Physiological/physiology , Energy Metabolism/physiology , Gene Expression Regulation, Enzymologic/physiology , Histone Deacetylases/physiology , Muscle, Skeletal/enzymology , Myoblasts/metabolism , Physical Conditioning, Animal/physiology , Protein Kinase C/physiology , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/physiology , Acetylation , Animals , Cell Line , Enzyme Activation , Glucose/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/biosynthesis , Histone Deacetylases/genetics , Mice , Mice, Inbred C57BL , Muscle Contraction , Phosphorylation , Point Mutation , Protein Kinase C/genetics , Protein Processing, Post-Translational , RNA, Messenger/biosynthesis , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Signal Transduction/physiology , Transcription, Genetic/physiology , Transgenes
8.
Diabetes ; 61(8): 2146-54, 2012 Aug.
Article En | MEDLINE | ID: mdl-22586591

We previously used Gene Expression Signature technology to identify methazolamide (MTZ) and related compounds with insulin sensitizing activity in vitro. The effects of these compounds were investigated in diabetic db/db mice, insulin-resistant diet-induced obese (DIO) mice, and rats with streptozotocin (STZ)-induced diabetes. MTZ reduced fasting blood glucose and HbA(1c) levels in db/db mice, improved glucose tolerance in DIO mice, and enhanced the glucose-lowering effects of exogenous insulin administration in rats with STZ-induced diabetes. Hyperinsulinemic-euglycemic clamps in DIO mice revealed that MTZ increased glucose infusion rate and suppressed endogenous glucose production. Whole-body or cellular oxygen consumption rate was not altered, suggesting MTZ may inhibit glucose production by different mechanism(s) to metformin. In support of this, MTZ enhanced the glucose-lowering effects of metformin in db/db mice. MTZ is known to be a carbonic anhydrase inhibitor (CAI); however, CAIs acetazolamide, ethoxyzolamide, dichlorphenamide, chlorthalidone, and furosemide were not effective in vivo. Our results demonstrate that MTZ acts as an insulin sensitizer that suppresses hepatic glucose production in vivo. The antidiabetic effect of MTZ does not appear to be a function of its known activity as a CAI. The additive glucose-lowering effect of MTZ together with metformin highlights the potential utility for the management of type 2 diabetes.


Blood Glucose/drug effects , Hypoglycemic Agents/therapeutic use , Insulin Resistance/physiology , Liver/metabolism , Methazolamide/therapeutic use , Animals , Blood Glucose/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Glucose Clamp Technique , Glucose-6-Phosphatase/drug effects , Glycolysis/drug effects , Homeostasis/drug effects , Insulin/therapeutic use , Male , Metformin/therapeutic use , Mice , Mice, Inbred C57BL , Mice, Obese , Oxygen Consumption/drug effects , Phosphoenolpyruvate Carboxykinase (ATP)/drug effects , Pyruvic Acid/metabolism , Rats , Rats, Sprague-Dawley
9.
Cell Physiol Biochem ; 28(1): 157-62, 2011.
Article En | MEDLINE | ID: mdl-21865858

Zinc accumulation may impair cellular bioenergetics, which is associated with neuronal apoptosis. We simultaneously assessed anaerobic and aerobic metabolism in live cells to characterise this effect and hypothesised that the omega 3 fatty acid docosahexaenoic acid (DHA) would protect against any zinc mediated alterations in bioenergetics. In this study we observed a decrease in cellular oxygen consumption, but not glycolytic rate, following chronic zinc exposure, which was specific for neuronal cells. This was due to impaired ATP turnover, without any other effects on mitochondrial function, and was restored by DHA. DHA had no further effects on bioenergetics. These data suggest that zinc disrupts bioenergetics at a point distal to the respiratory chain, which is restored by DHA.


Docosahexaenoic Acids/pharmacology , Energy Metabolism , Neurons/drug effects , Zinc/pharmacology , Adenosine Triphosphate/metabolism , Cell Line , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Mitochondria/metabolism , Mitochondria/physiology , Neurons/cytology , Neurons/metabolism , Oxygen Consumption
10.
Physiol Genomics ; 43(3): 110-20, 2011 Feb 11.
Article En | MEDLINE | ID: mdl-21081660

Insulin resistance is a heterogeneous disorder caused by a range of genetic and environmental factors, and we hypothesize that its etiology varies considerably between individuals. This heterogeneity provides significant challenges to the development of effective therapeutic regimes for long-term management of type 2 diabetes. We describe a novel strategy, using large-scale gene expression profiling, to develop a gene expression signature (GES) that reflects the overall state of insulin resistance in cells and patients. The GES was developed from 3T3-L1 adipocytes that were made "insulin resistant" by treatment with tumor necrosis factor-α (TNF-α) and then reversed with aspirin and troglitazone ("resensitized"). The GES consisted of five genes whose expression levels best discriminated between the insulin-resistant and insulin-resensitized states. We then used this GES to screen a compound library for agents that affected the GES genes in 3T3-L1 adipocytes in a way that most closely resembled the changes seen when insulin resistance was successfully reversed with aspirin and troglitazone. This screen identified both known and new insulin-sensitizing compounds including nonsteroidal anti-inflammatory agents, ß-adrenergic antagonists, ß-lactams, and sodium channel blockers. We tested the biological relevance of this GES in participants in the San Antonio Family Heart Study (n = 1,240) and showed that patients with the lowest GES scores were more insulin resistant (according to HOMA_IR and fasting plasma insulin levels; P < 0.001). These findings show that GES technology can be used for both the discovery of insulin-sensitizing compounds and the characterization of patients into subtypes of insulin resistance according to GES scores, opening the possibility of developing a personalized medicine approach to type 2 diabetes.


Gene Expression Profiling , Insulin Resistance/genetics , 3T3-L1 Cells , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Female , Gene Expression Regulation/drug effects , Glucose Transporter Type 4/metabolism , Humans , Insulin/metabolism , Male , Mice , Middle Aged , Protein Transport/drug effects , Reproducibility of Results , Tumor Necrosis Factor-alpha/pharmacology , Young Adult
11.
J Physiol ; 587(Pt 7): 1619-34, 2009 Apr 01.
Article En | MEDLINE | ID: mdl-19204049

Skeletal muscle tissue undergoes adaptive changes in response to stress and the genes that control these processes are incompletely characterised. NDRG2 (N-myc downstream-regulated gene 2), a stress- and growth-related gene, was investigated in skeletal muscle growth and adaption. While NDRG2 expression levels were found to be up-regulated in both differentiated human and mouse myotubes compared with undifferentiated myoblasts, the suppression of NDRG2 in C2C12 myoblasts resulted in slowed myoblast proliferation. The increased expression levels of the cell cycle inhibitors, p21 Waf1/Cip1 and p27 Kip1, and of various muscle differentiation markers in NDRG2-deficient myoblasts indicate that a lack of NDRG2 promoted cell cycle exiting and the onset of myogenesis. Furthermore, the analysis of NDRG2 regulation in C2C12 myotubes treated with catabolic and anabolic agents and in skeletal muscle from human subjects following resistance exercise training revealed NDRG2 gene expression to be down-regulated during hypertrophic conditions, and conversely, up-regulated during muscle atrophy. Together, these data demonstrate that NDRG2 expression is highly responsive to different stress conditions in skeletal muscle and suggest that the level of NDRG2 expression may be critical to myoblast growth and differentiation.


Cell Differentiation , Cell Proliferation , Muscle Development , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Myoblasts, Skeletal/metabolism , Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Adaptor Proteins, Signal Transducing , Age Factors , Aged , Animals , Cell Cycle Proteins/metabolism , Cell Differentiation/genetics , Cell Survival , Cells, Cultured , Female , Gene Expression Profiling , Humans , Hypertrophy , Male , Mice , Muscle Development/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle Proteins/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Myoblasts, Skeletal/pathology , Phenotype , Proteins/genetics , RNA Interference , RNA, Small Interfering/metabolism , Resistance Training , SKP Cullin F-Box Protein Ligases/metabolism , Time Factors , Transfection , Tripartite Motif Proteins , Tumor Suppressor Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Young Adult
...