Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Neurology ; 102(10): e209386, 2024 May 28.
Article En | MEDLINE | ID: mdl-38710005

BACKGROUND AND OBJECTIVES: Updated criteria for the clinical-MRI diagnosis of cerebral amyloid angiopathy (CAA) have recently been proposed. However, their performance in individuals without symptomatic intracerebral hemorrhage (ICH) presentations is less defined. We aimed to assess the diagnostic performance of the Boston criteria version 2.0 for CAA diagnosis in a cohort of individuals ranging from cognitively normal to dementia in the community and memory clinic settings. METHODS: Fifty-four participants from the Mayo Clinic Study of Aging or Alzheimer's Disease Research Center were included if they had an antemortem MRI with gradient-recall echo sequences and a brain autopsy with CAA evaluation. Performance of the Boston criteria v2.0 was compared with v1.5 using histopathologically verified CAA as the reference standard. RESULTS: The median age at MRI was 75 years (interquartile range 65-80) with 28/54 participants having histopathologically verified CAA (i.e., moderate-to-severe CAA in at least 1 lobar region). The sensitivity and specificity of the Boston criteria v2.0 were 28.6% (95% CI 13.2%-48.7%) and 65.3% (95% CI 44.3%-82.8%) for probable CAA diagnosis (area under the receiver operating characteristic curve [AUC] 0.47) and 75.0% (55.1-89.3) and 38.5% (20.2-59.4) for any CAA diagnosis (possible + probable; AUC 0.57), respectively. The v2.0 Boston criteria were not superior in performance compared with the prior v1.5 criteria for either CAA diagnostic category. DISCUSSION: The Boston criteria v2.0 have low accuracy in patients who are asymptomatic or only have cognitive symptoms. Additional biomarkers need to be explored to optimize CAA diagnosis in this population.


Cerebral Amyloid Angiopathy , Magnetic Resonance Imaging , Humans , Cerebral Amyloid Angiopathy/diagnostic imaging , Cerebral Amyloid Angiopathy/pathology , Aged , Female , Male , Magnetic Resonance Imaging/standards , Aged, 80 and over , Sensitivity and Specificity , Brain/diagnostic imaging , Brain/pathology , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/pathology
2.
Clin Neurol Neurosurg ; 237: 108123, 2024 02.
Article En | MEDLINE | ID: mdl-38262154

INTRODUCTION: Enlarged perivascular spaces (ePVS) may be an indicator of glymphatic dysfunction. Limited studies have evaluated the role of ePVS in idiopathic normal pressure hydrocephalus (iNPH). We aimed to characterize the distribution and number of ePVS in iNPH compared to controls. METHODS: Thirty-eight patients with iNPH and a pre-shunt MRI were identified through clinical practice. Age- and sex-matched controls who had negative MRIs screening for intracranial metastases were identified through a medical record linkage system. The number of ePVS were counted in the basal nuclei (BN) and centrum semiovale (CS) using the Wardlaw method blinded to clinical diagnosis. Imaging features of disproportionately enlarged subarachnoid space hydrocephalus (DESH), callosal angle, Fazekas white matter hyperintensity (WMH) grade, and the presence of microbleeds and lacunes were also evaluated. RESULTS: Both iNPH patients and controls had a mean age of 74 ± 7 years and were 34% female with equal distributions of hypertension, dyslipidemia, diabetes, stroke, and history of smoking. There were fewer ePVS in the CS of patients with iNPH compared to controls (12.66 vs. 20.39, p < 0.001) but the same in the BN (8.95 vs. 11.11, p = 0.08). This remained significant in models accounting for vascular risk factors (p = 0.002) and MRI features of DESH and WMH grade (p = 0.03). CONCLUSIONS: Fewer centrum semiovale ePVS may be a biomarker for iNPH. This pattern may be caused by mechanical obstruction due to upward displacement of the brain leading to reduced glymphatic clearance.


Hydrocephalus, Normal Pressure , Nervous System Malformations , Humans , Female , Aged , Aged, 80 and over , Male , Hydrocephalus, Normal Pressure/diagnostic imaging , Magnetic Resonance Imaging , Brain , Corpus Callosum , Basal Ganglia
3.
medRxiv ; 2023 Nov 20.
Article En | MEDLINE | ID: mdl-38045300

Limbic-predominant age-related TDP-43 encephalopathy (LATE) is a neuropathologically-defined disease that affects 40% of persons in advanced age, but its associated neurological syndrome is not defined. LATE neuropathological changes (LATE-NC) are frequently comorbid with Alzheimer's disease neuropathologic changes (ADNC). When seen in isolation, LATE-NC have been associated with a predominantly amnestic profile and slow clinical progression. We propose a set of clinical criteria for a limbic-predominant amnestic neurodegenerative syndrome (LANS) that is highly associated with LATE-NC but also other pathologic entities. The LANS criteria incorporate core, standard and advanced features that are measurable in vivo, including older age at evaluation, mild clinical syndrome, disproportionate hippocampal atrophy, impaired semantic memory, limbic hypometabolism, absence of neocortical degenerative patterns and low likelihood of neocortical tau, with degrees of certainty (highest, high, moderate, low). We operationalized this set of criteria using clinical, imaging and biomarker data to validate its associations with clinical and pathologic outcomes. We screened autopsied patients from Mayo Clinic (n = 922) and ADNI (n = 93) cohorts and applied the LANS criteria to those with an antemortem predominant amnestic syndrome (Mayo, n = 165; ADNI, n = 53). ADNC, ADNC/LATE-NC and LATE-NC accounted for 35%, 37% and 4% of cases in the Mayo cohort, respectively, and 30%, 22%, and 9% of cases in the ADNI cohort, respectively. The LANS criteria effectively categorized these cases, with ADNC having the lowest LANS likelihoods, LATE-NC patients having the highest likelihoods, and ADNC/LATE-NC patients having intermediate likelihoods. A logistic regression model using the LANS features as predictors of LATE-NC achieved a balanced accuracy of 74.6% in the Mayo cohort, and out-of-sample predictions in the ADNI cohort achieved a balanced accuracy of 73.3%. Patients with high LANS likelihoods had a milder and slower clinical course and more severe temporo-limbic degeneration compared to those with low likelihoods. Stratifying ADNC/LATE-NC patients from the Mayo cohort according to their LANS likelihood revealed that those with higher likelihoods had more temporo-limbic degeneration and a slower rate of cognitive decline, and those with lower likelihoods had more lateral temporo-parietal degeneration and a faster rate of cognitive decline. The implementation of LANS criteria has implications to disambiguate the different driving etiologies of progressive amnestic presentations in older age and guide prognosis, treatment, and clinical trials. The development of in vivo biomarkers specific to TDP-43 pathology are needed to refine molecular associations between LANS and LATE-NC and precise antemortem diagnoses of LATE.

4.
Neurology ; 95(10): e1333-e1340, 2020 09 08.
Article En | MEDLINE | ID: mdl-32641520

OBJECTIVE: To assess cerebrovascular reactivity in response to a visual task in participants with cerebral amyloid angiopathy (CAA), Alzheimer disease (AD), and mild cognitive impairment (MCI) using fMRI. METHODS: This prospective cohort study included 40 patients with CAA, 22 with AD, 27 with MCI, and 25 healthy controls. Each participant underwent a visual fMRI task using a contrast-reversing checkerboard stimulus. Visual evoked potentials (VEPs) were used to compare visual cortex neuronal activity in 83 participants. General linear models using least-squares means, adjusted for multiple comparisons with the Tukey test, were used to estimate mean blood oxygen level-dependent (BOLD) signal change during the task and VEP differences between groups. RESULTS: After adjustment for age and hypertension, estimated mean BOLD response amplitude was as follows: CAA 1.88% (95% confidence interval [CI] 1.60%-2.15%), AD 2.26% (1.91%-2.61%), MCI 2.15% (1.84%-2.46%), and control 2.65% (2.29%-3.00%). Only patients with CAA differed from controls (p = 0.01). In the subset with VEPs, group was not associated with prolonged latencies or lower amplitudes. Lower BOLD amplitude response was associated with higher white matter hyperintensity (WMH) volumes in CAA (for each 0.1% lower BOLD response amplitude, the WMH volume was 9.2% higher, 95% CI 6.0%-12.4%) but not other groups (p = 0.002 for interaction) when controlling for age and hypertension. CONCLUSIONS: Mean visual BOLD response amplitude was lowest in participants with CAA compared to controls, without differences in VEP latencies and amplitudes. This suggests that the impaired visual BOLD response is due to reduced vascular reactivity in CAA. In contrast to participants with CAA, the visual BOLD response amplitude did not differ between those with AD or MCI and controls.


Alzheimer Disease/physiopathology , Cerebral Amyloid Angiopathy/physiopathology , Cerebrovascular Circulation/physiology , Cognitive Dysfunction/physiopathology , Aged , Cohort Studies , Cross-Sectional Studies , Echo-Planar Imaging , Evoked Potentials, Visual/physiology , Female , Humans , Image Interpretation, Computer-Assisted/methods , Male , Middle Aged , Prospective Studies , Visual Cortex/physiopathology
6.
Stroke ; 49(8): 1899-1905, 2018 08.
Article En | MEDLINE | ID: mdl-29986931

Background and Purpose- Cerebral microinfarcts are small ischemic lesions that are found in cerebral amyloid angiopathy (CAA) patients at autopsy. The current study aimed to detect cortical microinfarcts (CMI) on in vivo 3 Tesla (3T) magnetic resonance imaging (MRI) in CAA patients, to study the progression of CMI over a 1-year period, and to correlate CMI with markers of CAA-related vascular brain injury and cognitive functioning. Methods- Thirty-five CAA patients (mean age, 74.2±7.6 years), 13 Alzheimer disease (AD) patients (67.0±5.8 years), and 26 healthy controls (67.2±9.5 years) participated in the study. All participants underwent a standardized clinical and neuropsychological assessment as well as 3T MRI. CMI were rated according to standardized criteria. Results- CMI were present in significantly more CAA patients (57.1%; median number: 1, range 1-9) than in Alzheimer disease (7.7%) or in healthy controls (11.5%; P<0.001). Incident CMI were observed after a 1-year follow-up. CMI did not correlate with any other MRI marker of CAA nor with cognitive function. Conclusions- In vivo CMI are a frequent finding on 3T MRI in CAA patients, and incident CMI are observable after 1-year follow-up. CMI can be regarded as a new MRI marker of CAA, potentially distinct from other well-established markers. Future larger cohort studies with longitudinal follow-up are needed to elucidate the relationship between CMI and possible causes and clinical outcomes in CAA.


Cerebral Amyloid Angiopathy/diagnostic imaging , Cerebral Amyloid Angiopathy/epidemiology , Cerebral Cortex/diagnostic imaging , Cerebral Infarction/diagnostic imaging , Cerebral Infarction/epidemiology , Cognition , Magnetic Resonance Imaging/methods , Aged , Aged, 80 and over , Cognition/physiology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prospective Studies
7.
J Neurol Sci ; 375: 248-254, 2017 Apr 15.
Article En | MEDLINE | ID: mdl-28320141

OBJECTIVES: The magnitude of the blood oxygen dependent level (BOLD) functional MRI (fMRI) response to visual stimulation is reduced in the small vessel disease cerebral amyloid angiopathy (CAA), reflecting impaired vascular reactivity. We determined whether BOLD responses were reduced in another small vessel disease, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). METHODS: BOLD fMRI data were collected using a visual stimulus (contrast-reversing checkerboard) and motor task (finger-tapping). The amplitude of BOLD responses in the visual cortex (visual stimulus) and motor cortex (motor task) were compared between 5 CADASIL, 18 CAA and 18 control subjects, controlling for age and hypertension. RESULTS: BOLD response varied by group for the visual stimulus (p<0.001) but not the motor task (p=0.47). After adjusting for age and hypertension, the estimated mean visual cortex BOLD amplitude response was 3.95% in CADASIL (95% confidence interval, CI 3.15-4.75%), 1.73% in CAA (95% CI 1.19-2.27%), and 2.88% (95% CI 2.39-3.37%) in controls. In CADASIL, the visual BOLD response was greater than in CAA (p<0.001) and controls (p=0.04). CONCLUSIONS: We observed increased and unchanged BOLD amplitude responses in the visual and motor cortices of CADASIL patients, respectively. This suggests that cortical blood flow regulation by neuronal activity may be relatively preserved in CADASIL, in contrast to CAA where occipital vascular reactivity is impaired. Cortical vascular reactivity in CADASIL may be preserved because the disease-related injury is primarily subcortical, whereas increased activation may reflect compensatory mechanisms for subcortical injury.


CADASIL/diagnostic imaging , Magnetic Resonance Imaging , Adult , Aged , Analysis of Variance , Electroencephalography , Evoked Potentials, Visual/physiology , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Angiography , Male , Middle Aged , Motor Cortex/diagnostic imaging , Neuropsychological Tests , Oxygen/blood
8.
Neuroimage Clin ; 11: 461-467, 2016.
Article En | MEDLINE | ID: mdl-27104140

Lower blood oxygenation level dependent (BOLD) signal changes in response to a visual stimulus in functional magnetic resonance imaging (fMRI) have been observed in cross-sectional studies of cerebral amyloid angiopathy (CAA), and are presumed to reflect impaired vascular reactivity. We used fMRI to detect a longitudinal change in BOLD responses to a visual stimulus in CAA, and to determine any correlations between these changes and other established biomarkers of CAA progression. Data were acquired from 22 patients diagnosed with probable CAA (using the Boston Criteria) and 16 healthy controls at baseline and one year. BOLD data were generated from the 200 most active voxels of the primary visual cortex during the fMRI visual stimulus (passively viewing an alternating checkerboard pattern). In general, BOLD amplitudes were lower at one year compared to baseline in patients with CAA (p = 0.01) but were unchanged in controls (p = 0.18). The longitudinal difference in BOLD amplitudes was significantly lower in CAA compared to controls (p < 0.001). White matter hyperintensity (WMH) volumes and number of cerebral microbleeds, both presumed to reflect CAA-mediated vascular injury, increased over time in CAA (p = 0.007 and p = 0.001, respectively). Longitudinal increases in WMH (rs = 0.04, p = 0.86) or cerebral microbleeds (rs = -0.18, p = 0.45) were not associated with the longitudinal decrease in BOLD amplitudes.


Cerebral Amyloid Angiopathy/diagnostic imaging , Cerebral Amyloid Angiopathy/pathology , Visual Cortex/blood supply , Aged , Aged, 80 and over , Cross-Sectional Studies , Disease Progression , Female , Humans , Image Processing, Computer-Assisted , Linear Models , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Oxygen/blood
...