Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37958519

RESUMEN

Altered hepatic mitochondrial fatty acid ß-oxidation and associated tricarboxylic acid (TCA) cycle activity contributes to lifestyle-related diseases, and circulating biomarkers reflecting these changes could have disease prognostic value. This study aimed to determine hepatic and systemic changes in TCA-cycle-related metabolites upon the selective pharmacologic enhancement of mitochondrial fatty acid ß-oxidation in the liver, and to elucidate the mechanisms and potential markers of hepatic mitochondrial activity. Male Wistar rats were treated with 3-thia fatty acids (e.g., tetradecylthioacetic acid (TTA)), which target mitochondrial biogenesis, mitochondrial fatty acid ß-oxidation, and ketogenesis predominantly in the liver. Hepatic and plasma concentrations of TCA cycle intermediates and anaplerotic substrates (LC-MS/MS), plasma ketones (colorimetric assay), and acylcarnitines (HPLC-MS/MS), along with associated TCA-cycle-related gene expression (qPCR) and enzyme activities, were determined. TTA-induced hepatic fatty acid ß-oxidation resulted in an increased ratio of plasma ketone bodies/nonesterified fatty acid (NEFA), lower plasma malonyl-CoA levels, and a higher ratio of plasma acetylcarnitine/palmitoylcarnitine (C2/C16). These changes were associated with decreased hepatic and increased plasma pyruvate concentrations, and increased plasma concentrations of succinate, malate, and 2-hydroxyglutarate. Expression of several genes encoding TCA cycle enzymes and the malate-oxoglutarate carrier (Slc25a11), glutamate dehydrogenase (Gdh), and malic enzyme (Mdh1 and Mdh2) were significantly increased. In conclusion, the induction of hepatic mitochondrial fatty acid ß-oxidation by 3-thia fatty acids lowered hepatic pyruvate while increasing plasma pyruvate, as well as succinate, malate, and 2-hydroxyglutarate.


Asunto(s)
Malatos , Ácido Pirúvico , Ratas , Animales , Masculino , Ratas Wistar , Malatos/metabolismo , Ácido Pirúvico/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Hígado/metabolismo , Ácidos Grasos/metabolismo , Oxidación-Reducción , Cuerpos Cetónicos/metabolismo , Succinatos/metabolismo
2.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 8): 537-542, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31397324

RESUMEN

The crystal structure of haemoglobin from Atlantic cod has been solved to 2.54 Šresolution. The structure consists of two tetramers in the crystallographic asymmetric unit. The structure of haemoglobin obtained from one individual cod suggests polymorphism in the tetrameric assembly.


Asunto(s)
Cristalografía por Rayos X/métodos , Proteínas de Peces/química , Gadus morhua , Hemoglobinas/química , Animales , Proteínas de Peces/metabolismo , Gadus morhua/metabolismo , Modelos Moleculares , Conformación Proteica
3.
BMC Microbiol ; 18(1): 25, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29609542

RESUMEN

BACKGROUND: The expansion of offshore oil exploration increases the risk of marine species being exposed to oil pollution in currently pristine areas. The adverse effects of oil exposure through toxic properties of polycyclic aromatic hydrocarbons (PAHs) have been well studied in Atlantic cod (Gadus morhua). Nevertheless, the fate of conjugated metabolites in the intestinal tract and their effect on the diversity of intestinal microbial community in fish is less understood. Here, we investigated the intestinal microbial community composition of Atlantic cod after 28 days of exposure to crude oil (concentration range 0.0-0.1 mg/L). RESULTS: Analysis of PAH metabolites in bile samples confirmed that uptake and biotransformation of oil compounds occurred as a result of the exposure. Various evidence for altered microbial communities was found in fish exposed to high (0.1 mg/L) and medium (0.05 mg/L) concentrations of oil when compared to fish exposed to low oil concentration (0.01 mg/L) or no oil (control). First, altered banding patterns were observed on denaturing gradient gel electrophoresis for samples pooled from each treatment group. Secondly, based on 16S rRNA sequences, higher levels of oil exposure were associated with a loss of overall diversity of the gut microbial communities. Furthermore, 8 operational taxonomic units (OTUs) were found to have significantly different relative abundances in samples from fishes exposed to high and medium oil concentrations when compared to samples from the control group and low oil concentration. Among these, only one OTU, a Deferribacterales, had increased relative abundance in samples from fish exposed to high oil concentration. CONCLUSIONS: The results presented herein contribute to a better understanding of the effects of oil contamination on the gut microbial community changes in fish and highlight the importance of further studies into the area. Our findings suggest that increased relative abundance of bacteria belonging to the order Deferribacterales may be indicative of exposure to oil at concentrations higher than 0.05 mg/L.


Asunto(s)
Bacterias/clasificación , Bacterias/efectos de los fármacos , Gadus morhua/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Microbiota/efectos de los fármacos , Petróleo , Hidrocarburos Policíclicos Aromáticos/efectos adversos , Animales , Bacterias/genética , Bacterias/metabolismo , Biodiversidad , Biotransformación , ADN Bacteriano/análisis , Monitoreo del Ambiente , Peces/microbiología , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Indanos , Microbiota/genética , Microbiota/fisiología , Filogenia , Hidrocarburos Policíclicos Aromáticos/metabolismo , ARN Ribosómico 16S , Contaminantes Químicos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA