Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 55(62): 9200-9203, 2019 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-31309949

RESUMEN

Nanoindentation has extensively been used to measure the mechanical properties of molecular crystals. However, the possibilities of stress induced polymorphic transformation during indentation are still unexplored. Here, we have adopted a spatially synchronized Raman spectroscopy and nanoindentation technique to probe indentation induced polymorphic transformation in aspirin polymorphs. Spatial hardness maps, generated using an accelerated property mapping technique, showed micro-domain formation in aspirin form II crystals.

2.
Chem Commun (Camb) ; 53(97): 13035-13038, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29164189

RESUMEN

The structural dynamics of two elastically bendable, halogenated N-benzylideneaniline organic crystals were studied using an in situ three-point bending test and Raman spectroscopy. This study reveals the inhomogeneous molecular distribution in the elastic crystal lattice during the bent stage and further validates the known qualitative mechanistic model of elastic bendable crystals.

3.
Nano Lett ; 16(8): 4946-53, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27351706

RESUMEN

One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this study, the tension-tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were applied at frequencies from one to several hundred hertz, enabling accumulations of 10(6) cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ∼10(-12) m·cycle(-1). This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. These observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.

4.
Nano Lett ; 11(8): 3207-13, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21736336

RESUMEN

The elastic properties and structural phase transitions of individual VO(2) nanowires were studied using an in situ push-to-pull microelectromechanical device to realize quantitative tensile analysis in a transmission electron microscope and a synchrotron X-ray microdiffraction beamline. A plateau was detected in the stress-strain curve, signifying superelasticity of the nanowire arising from the M1-M2 structural phase transition. The transition was induced and controlled by uniaxial tension. The transition dynamics were characterized by a one-dimensionally aligned domain structure with pinning and depinning of the domain walls along the nanowire. From the stress-strain dependence the Young's moduli of the VO(2) M1 and M2 phases were estimated to be 128 ± 10 and 156 ± 10 GPa, respectively. Single pinning and depinning events of M1-M2 domain wall were observed in the superelastic regime, allowing for evaluation of the domain wall pinning potential energy. This study demonstrates a new way to investigate nanoscale mechanics and dynamics of structural phase transitions in general.

5.
Nat Mater ; 7(2): 115-9, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18157134

RESUMEN

The fundamental processes that govern plasticity and determine strength in crystalline materials at small length scales have been studied for over fifty years. Recent studies of single-crystal metallic pillars with diameters of a few tens of micrometres or less have clearly demonstrated that the strengths of these pillars increase as their diameters decrease, leading to attempts to augment existing ideas about pronounced size effects with new models and simulations. Through in situ nanocompression experiments inside a transmission electron microscope we can directly observe the deformation of these pillar structures and correlate the measured stress values with discrete plastic events. Our experiments show that submicrometre nickel crystals microfabricated into pillar structures contain a high density of initial defects after processing but can be made dislocation free by applying purely mechanical stress. This phenomenon, termed 'mechanical annealing', leads to clear evidence of source-limited deformation where atypical hardening occurs through the progressive activation and exhaustion of dislocation sources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA