Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 144
1.
J Biomol NMR ; 78(2): 119-124, 2024 Jun.
Article En | MEDLINE | ID: mdl-38407676

The focus of this project is to take advantage of the large NMR chemical shift anisotropy of 19F to determine the orientation of fluorine labeled biomolecules in situ in oriented biological systems such as muscle. The difficulty with a single fluorine atom is that the orientation determined from a chemical shift is not singlevalued in the case of a fully anisotropic chemical shift tensor. The utility of a labeling approach with two fluorine labels in a fixed molecular framework where one of the labels has an axially symmetric chemical shift anisotropy such as a CF3 group and the other has a fully asymmetric chemical shift anisotropy such as 5-fluorotryptophan is evaluated. The result is that the orientation of the label can be determined straightforwardly from a single one-dimensional 19F NMR spectrum. The potential applications are widespread and not limited to biological applications.


Fluorine , Nuclear Magnetic Resonance, Biomolecular , Fluorine/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Anisotropy , Isotope Labeling/methods
2.
ACS Med Chem Lett ; 14(4): 530-533, 2023 Apr 13.
Article En | MEDLINE | ID: mdl-37077384

The binding of calcium to cardiac troponin C (cTnC) enhances the binding of troponin I (cTnI) switch region to the regulatory domain of cTnC (cNTnC) and triggers muscle contraction. Several molecules alter the response of the sarcomere by targeting this interface; virtually all have an aromatic core that binds to the hydrophobic pocket of cNTnC and an aliphatic tail that interacts with the switch region of cTnI. W7 has been extensively studied, and the positively charged tail has been shown to be important for its inhibitory action. Herein we investigate the importance of the aromatic core of W7 by synthesizing compounds that have the core region of calcium activator dfbp-o with various lengths of the same tail (D-series). These compounds all bind more tightly to cNTnC-cTnI chimera (cChimera) than the analogous W-series compounds and show increased calcium sensitivity of force generation and ATPase activity, demonstrating that the cardiovascular system is tightly balanced.

3.
ACS Chem Biol ; 17(6): 1495-1504, 2022 06 17.
Article En | MEDLINE | ID: mdl-35649123

W7 is a sarcomere inhibitor that decreases the calcium sensitivity of force development in cardiac muscle. W7 binds to the interface of the regulatory domain of cardiac troponin C (cNTnC) and the switch region of troponin I (cTnI), decreasing the binding of cTnI to cNTnC, presumably by electrostatic repulsion between the -NH3+ group of W7 and basic amino acids in cTnI. W7 analogs with a -CO2- tail are inactive. To evaluate the importance of the location of the charged -NH3+, we used a series of compounds W4, W6, W8, and W9, which have three less, one less, one more, and two more methylene groups in the tail region than W7. W6, W8, and W9 all bind tighter to cNTnC-cTnI chimera (cChimera) than W7, while W4 binds weaker. W4 and, strikingly, W6 have no effect on calcium sensitivity of force generation, while W8 and W9 decrease calcium sensitivity, but less than W7. The structures of the cChimera-W6 and cChimera-W8 complexes reveal that W6 and W8 bind to the same hydrophobic cleft as W7, with the aliphatic tail taking a similar route to the surface. NMR relaxation data show that internal flexibility in the tail of W7 is very limited. Alignment of the cChimera-W7 structure with the recent cryoEM structures of the cardiac sarcomere in the diastolic and systolic states reveals the critical location of the amino group. Small molecule induced structural changes can therefore affect the tightly balanced equilibrium between tethered components required for rapid contraction.


Sarcomeres , Troponin C , Calcium/metabolism , Myocardium/metabolism , Sarcomeres/metabolism , Sulfonamides/chemistry , Troponin C/chemistry , Troponin I/chemistry
4.
ACS Med Chem Lett ; 12(9): 1503-1507, 2021 Sep 09.
Article En | MEDLINE | ID: mdl-34531960

Compounds that directly modulate the response of the cardiac sarcomere have potential in the treatment of cardiac disease. While a number of sarcomere activators have been discovered and extensively studied, very few inhibitors have been identified. We report a potent cardiac sarcomere inhibitor, DN-F01, targeting the cardiac muscle thin filament protein troponin complex. Functional studies show that DN-F01 has a strong inhibitory calcium-dependent effect on cardiac myofibrillar ATPase activity with an IC50 value of 11 ± 4 nmol/L. DN-F01 is shown to bind to a cardiac troponin C-troponin I chimera (cChimera) with a K D of ∼50 nM using fluorescence spectroscopy, indicating that troponin is the likely target for DN-F01. NMR titrations of DN-F01 to C35S and A-Cys cChimera show covalent and noncovalent binding of DN-F01 bound to the calcium-saturated cChimera.

5.
J Med Chem ; 64(6): 3026-3034, 2021 03 25.
Article En | MEDLINE | ID: mdl-33703886

Troponin regulates the calcium-mediated activation of skeletal muscle. Muscle weakness in diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy occurs from diminished neuromuscular output. The first direct fast skeletal troponin activator, tirasemtiv, amplifies the response of muscle to neuromuscular input. Tirasemtiv binds selectively and strongly to fast skeletal troponin, slowing the rate of calcium release and sensitizing muscle to calcium. We report the solution NMR structure of tirasemtiv bound to a fast skeletal troponin C-troponin I chimera. The structure reveals that tirasemtiv binds in a hydrophobic pocket between the regulatory domain of troponin C and the switch region of troponin I, which overlaps with that of Anapoe in the X-ray structure of skeletal troponin. Multiple interactions stabilize the troponin C-troponin I interface, increase the affinity of troponin C for the switch region of fast skeletal troponin I, and drive the equilibrium toward the active state.


Imidazoles/pharmacology , Muscle, Skeletal/drug effects , Pyrazines/pharmacology , Troponin C/metabolism , Troponin I/metabolism , Binding Sites/drug effects , Crystallography, X-Ray , Humans , Imidazoles/chemistry , Molecular Docking Simulation , Muscle, Skeletal/physiology , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation/drug effects , Pyrazines/chemistry , Troponin C/chemistry , Troponin I/chemistry
6.
ACS Chem Biol ; 15(8): 2289-2298, 2020 08 21.
Article En | MEDLINE | ID: mdl-32633482

Heart muscle contraction is regulated by calcium binding to cardiac troponin C. This induces troponin I (cTnI) switch region binding to the regulatory domain of troponin C (cNTnC), pulling the cTnI inhibitory region off actin and triggering muscle contraction. Small molecules targeting this cNTnC-cTnI interface have potential in the treatment of heart disease. Most of these have an aromatic core which binds to the hydrophobic core of cNTnC, and a polar and often charged 'tail'. The calmodulin antagonist W7 is unique in that it acts as calcium desensitizer. W7 binds to the interface of cNTnC and cTnI switch region and weakens cTnI binding, possibly by electrostatic repulsion between the positively charged terminal amino group of W7 and the positively charged RRVR144-147 region of cTnI. To evaluate the role of electrostatics, we synthesized A7, where the amino group of W7 was replaced with a carboxyl group. We determined the high-resolution solution NMR structure of A7 bound to a cNTnC-cTnI chimera. The structure shows that A7 does not change the overall conformation of the cNTnC-cTnI interface, and the naphthalene ring of A7 sits in the same hydrophobic pocket as that of W7, but the charged tail takes a different route to the surface of the complex, especially with respect to the position of the switch region of cTnI. We measured the affinities of A7 for cNTnC and the cNTnC-cTnI complex and that of the cTnI switch peptide for the cNTnC-A7 complex. We also compared the binding of W7 and A7 for two cNTnC-cTnI chimeras, differing in the presence or absence of the RRVR region of cTnI. A7 decreased the binding affinity of cTnI to cNTnC substantially less than W7 and bound more tightly to the more positively charged chimera. We tested the effects of W7 and A7 on the force-calcium relation of demembranated rat right ventricular trabeculae and demonstrated that A7 has a much weaker desensitization effect than W7. We also synthesized A6, which has one less methylene group on the hydrocarbon chain than A7. A6 did not affect binding of cTnI switch peptide nor change the calcium sensitivity of ventricular trabeculae. These results suggest that the negative inotropic effect of W7 may result from a combination of electrostatic repulsion and steric hindrance with cTnI.


Heart/drug effects , Myofibrils/drug effects , Static Electricity , Animals , Calcium/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Protein Binding , Rats , Small Molecule Libraries/pharmacology , Troponin C/chemistry , Troponin C/metabolism , Troponin I/chemistry , Troponin I/metabolism
7.
Metabolomics ; 16(6): 72, 2020 06 12.
Article En | MEDLINE | ID: mdl-32533504

INTRODUCTION: Prion disease is a form of neurodegenerative disease caused by the misfolding and aggregation of cellular prion protein (PrPC). The neurotoxicity of the misfolded form of prion protein, PrPSc still remains understudied. Here we try to investigate this issue using a metabolomics approach. OBJECTIVES: The intention was to identify and quantify the small-in-size and water-soluble metabolites extracted from mice brains infected with the Rocky Mountain Laboratory isolate of mouse-adapted scrapie prions (RML) and track changes in these metabolites during disease evolution. METHODS: A total of 73 mice were inoculated with RML prions or normal brain homogenate control; brains were harvested at 30, 60, 90, 120 and 150 days post-inoculation (dpi). We devised a high-efficiency metabolite extraction method and used nuclear magnetic resonance spectroscopy to identify and quantify 50 metabolites in the brain extracts. Data were analyzed using multivariate approach. RESULTS: Brain metabolome profiles of RML infected animals displayed continuous changes throughout the course of disease. Among the analyzed metabolites, the most noteworthy changes included increases in myo-inositol and glutamine as well as decreases in 4-aminobutyrate, acetate, aspartate and taurine. CONCLUSION: We report a novel metabolite extraction method for lipid-rich tissue. As all the major metabolites are identifiable and quantifiable by magnetic resonance spectroscopy, this study suggests that tracking of neurochemical profiles could be effective in monitoring the progression of neurodegenerative diseases and useful for assessing the efficacy of candidate therapeutics.


Metabolomics/methods , Prions/metabolism , Scrapie/metabolism , Animals , Brain/metabolism , Disease Progression , Female , Male , Metabolome/physiology , Mice , Mice, Inbred Strains , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Prions/chemistry , Scrapie/pathology
8.
J Biomol NMR ; 74(1): 1-7, 2020 Jan.
Article En | MEDLINE | ID: mdl-31912345

When planning a fluorine labeling strategy for 19F solid state NMR (ssNMR) studies of the structure and/or mobility of fluorine labeled compounds in situ in an oriented biological system, it is important to characterize the NMR properties of the label. This manuscript focuses on the characterization of a selection of aromatic fluorine compounds in dimyristoylphosphatidylcholine bilayers using 19F ssNMR from the standpoint of determining the optimum arrangement of fluorine nuclei on a pendant aromatic ring before incorporation into more complex biological systems.


Fluorine/chemistry , Isotope Labeling , Nuclear Magnetic Resonance, Biomolecular , Biphenyl Compounds/chemistry , Dimyristoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry
9.
J Biomol NMR ; 73(10-11): 519-523, 2019 Nov.
Article En | MEDLINE | ID: mdl-31267350

Insights into the structure and dynamics of large biological systems has been greatly improved by two concurrent NMR approaches: the application of transverse relaxation-optimized spectroscopy (TROSY) techniques in multi-dimensional NMR, especially the methyl-TROSY, and the resurgence of 19F NMR using trifluoromethyl (CF3) probes. Herein we investigate the feasibility of combining these approaches into a trifluoromethyl-TROSY experiment. Using a CF3-labelled parvalbumin, we have evaluated the natural abundance 13C-19F correlation spectra and find no indication of a CF3 TROSY at high magnetic fields.


Carbon Isotopes/analysis , Chlorofluorocarbons, Methane/chemistry , Fluorine/analysis , Magnetic Fields , Magnetic Resonance Spectroscopy/methods , Carbon-13 Magnetic Resonance Spectroscopy , Feasibility Studies , Humans , Magnetic Resonance Spectroscopy/instrumentation , Parvalbumins/chemistry
10.
J Mol Biol ; 431(14): 2599-2611, 2019 06 28.
Article En | MEDLINE | ID: mdl-31034890

Prion diseases are neurodegenerative disorders caused by the misfolding of the cellular prion protein (PrPC). Gerstmann-Sträussler-Scheinker syndrome is an inherited prion disease with one early-onset allele (HRdup) containing an eight-amino-acid insertion; this LGGLGGYV insert is positioned after valine 129 (human PrPC sequence) in a hydrophobic tract in the natively disordered region. Here we have characterized the structure and explored the molecular motions and dynamics of HRdup PrP and a control allele. High-resolution NMR data suggest that the core of HRdup has a canonical PrPC structure, yet a nascent ß-structure is observed in the flexible elongated hydrophobic region of HRdup. In addition, using mouse PrPC sequence, we observed that a methionine/valine polymorphism at codon 128 (equivalent of methionine/valine 129 in human sequence) and oligomerization caused by high protein concentration affects conformational exchange dynamics at residue G130. We hypothesize that with the ß-structure at the N-terminus, the hydrophobic region of HRdup can adopt a fully extended configuration and fold back to form an extended ß-sheet with the existing ß-sheet. We propose that these structures are early chemical events in disease pathogenesis.


Gerstmann-Straussler-Scheinker Disease/genetics , Polymorphism, Genetic , Prion Proteins/chemistry , Prion Proteins/genetics , Protein Conformation , Alleles , Animals , Codon , Humans , Hydrophobic and Hydrophilic Interactions , Mice
11.
ACS Med Chem Lett ; 10(6): 1007-1012, 2019 Jun 13.
Article En | MEDLINE | ID: mdl-32426091

We have investigated the mechanism and reactivity of covalent bond formation between cysteine-84 of the regulatory domain of cardiac troponin C and compounds containing a nitrile moiety similar to the calcium sensitizer levosimendan. The results of modifications to the levosimendan framework ranged from a large increase in covalent bond formation to complete inactivity. We present the biological activity of one of the most potent compounds. Limitations, including compound solubility and degradation at acidic pH, have prevented thorough investigation of the potential of these compounds. Our studies reveal the efficacious nature of the malononitrile moiety in targeting cNTnC and its potential in future cardiotonic drug design.

12.
Biochim Biophys Acta Biomembr ; 1861(1): 191-200, 2019 01.
Article En | MEDLINE | ID: mdl-30071192

The mammalian Na+/H+ exchanger isoform 1 (NHE1) is an integral membrane protein that regulates intracellular pH (pHi) by removing a single intracellular proton in exchange for one extracellular sodium ion. It is involved in cardiac hypertrophy and ischemia reperfusion damage to the heart and elevation of its activity is a trigger for breast cancer metastasis. NHE1 has an extensive 500 amino acid N-terminal membrane domain that mediates transport and consists of 12 transmembrane segments connected by intracellular and extracellular loops. Intracellular loops are hypothesized to modulate the sensitivity to pHi. In this study, we characterized the structure and function of intracellular loop 5 (IL5), specifically amino acids 431-443. Mutation of eleven residues to alanine caused partial or nearly complete inhibition of transport; notably, mutation of residues L432, T433, I436, N437, R440 and K443 demonstrated these residues had critical roles in NHE1 function independent of effects on targeting or expression. The nuclear magnetic resonance (NMR) solution spectra of the IL5 peptide in a membrane mimetic sodium dodecyl sulfate solution revealed that IL5 has a stable three-dimensional structure with substantial alpha helical character. NMR chemical shifts indicated that K438 was in close proximity with W434. Overall, our results show that IL5 is a critical, intracellular loop with a propensity to form an alpha helix, and many residues of this intracellular loop are critical to proton sensing and ion transport.


Sodium-Hydrogen Exchanger 1/chemistry , Sodium-Hydrogen Exchangers/chemistry , Alanine/chemistry , Animals , Cell Membrane/chemistry , Cytoplasm/chemistry , Humans , Hydrogen-Ion Concentration , Ion Transport , Magnetic Resonance Spectroscopy , Mutagenesis, Site-Directed , Mutation , Peptides/chemistry , Protein Domains , Protein Isoforms/chemistry , Protein Structure, Secondary , Protons
13.
Biochem Biophys Rep ; 16: 145-151, 2018 Dec.
Article En | MEDLINE | ID: mdl-30417133

The compound MCI-154 was previously shown to increase the calcium sensitivity of cardiac muscle contraction. Using solution NMR spectroscopy, we demonstrate that MCI-154 interacts with the calcium-sensing subunit of the cardiac troponin complex, cardiac troponin C (cTnC). Surprisingly, however, it binds only to the structural C-terminal domain of cTnC (cCTnC), and not to the regulatory N-terminal domain (cNTnC) that determines the calcium sensitivity of cardiac muscle. Physiologically, cTnC is always bound to cardiac troponin I (cTnI), so we examined its interaction with MCI-154 in the presence of two soluble constructs, cTnI1-77 and cTnI135-209, which contain all of the segments of cTnI known to interact with cTnC. Neither the cTnC-cTnI1-77 complex nor the cTnC-cTnI135-209 complex binds to MCI-154. Since residues 39-60 of cTnI are known to bind tightly to the cCTnC domain to form a structured core that is invariant throughout the cardiac cycle, we conclude that MCI-154 does not bind to cTnC when it is part of the intact cardiac troponin complex. Thus, MCI-154 likely exerts its calcium sensitizing effect by interacting with a target other than cardiac troponin.

14.
Biochemistry ; 57(46): 6461-6469, 2018 11 20.
Article En | MEDLINE | ID: mdl-30376637

Compounds that directly modulate the affinity of the thin filament calcium regulatory proteins in cardiac muscle have potential for treating heart disease. A recent "proof of concept" study showed that the desensitizer W7 can correct hyper-calcium-sensitive sarcomeres from RCM R193H inhibitory subunit troponin I (cTnI) transgenic mice. We have determined the high-resolution nuclear magnetic resonance solution structure of W7 bound to the regulatory domain of calcium binding subunit troponin C (cNTnC)-cTnI cChimera designed to represent the key aspects of the cTnC-cTnI interface. The structure shows that W7 does not perturb the overall structure of the cTnC-cTnI interface, with the helical structure and position of the cTnI switch region remaining intact upon W7 binding. The naphthalene ring of W7 sits in the hydrophobic pocket created by the cNTnC-cTnI switch peptide interface, while the positively charged amine tail extends into the solvent. The positively charged tail of W7 is in the proximity of Arg147 of the cTnI switch region, supporting the suggestion that electrostatic repulsion is an aspect underlying the mechanism of desensitization. Ser84 (replacing the unique Cys84 in cTnC reported to make a reversible covalent bond with levosimendan) also contacts W7.


Calcium/metabolism , Enzyme Inhibitors/metabolism , Sulfonamides/metabolism , Troponin C/metabolism , Animals , Mice , Models, Molecular , Protein Binding , Protein Conformation
16.
Biochim Biophys Acta Proteins Proteom ; 1866(9): 982-988, 2018 09.
Article En | MEDLINE | ID: mdl-29935976

Prion (PrP) diseases are neurodegenerative diseases characterized by the formation of ß-sheet rich, insoluble and protease resistant protein deposits (called PrPSc) that occur throughout the brain. Formation of synthetic or in vitro PrPSc can occur through on-pathway toxic oligomers. Similarly, toxic and infectious oligomers identified in cell and animal models of prion disease indicate that soluble oligomers are likely intermediates in the formation of insoluble PrPSc. Despite the critical role of prion oligomers in disease progression, little is known about their structure. In order, to obtain structural insight into prion oligomers, we generated oligomers by shaking-induced conversion of recombinant, monomeric prion protein PrPc (spanning residues 90-231). We then obtained two-dimensional solution NMR spectra of the PrPc monomer, a 40% converted oligomer, and a 94% converted oligomer. Heteronuclear single-quantum correlation (1H-15N) studies revealed that, in comparison to monomeric PrPc, the oligomer has intense amide peak signals in the N-terminal (residues 90-114) and C-terminal regions (residues 226-231). Furthermore, a core region with decreased mobility is revealed from residues ~127 to 225. Within this core oligomer region with decreased mobility, there is a pocket of increased amide peak signal corresponding to the middle of α-helix 2 and the loop between α-helices 2 and 3 in the PrPc monomer structure. Using high-resolution solution-state NMR, this work reveals detailed and divergent residue-specific changes in soluble oligomeric models of PrP.


Prion Proteins/chemistry , Protein Conformation , Protein Folding , Animals , Circular Dichroism , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , PrPC Proteins/chemistry , PrPSc Proteins/chemistry , Prion Proteins/genetics , Prions , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Recombinant Proteins/chemistry
17.
Biochemistry ; 57(15): 2256-2265, 2018 04 17.
Article En | MEDLINE | ID: mdl-29558109

The development of calcium sensitizers for the treatment of systolic heart failure presents difficulties, including judging the optimal efficacy and the specificity to target cardiac muscle. The thin filament is an attractive target because cardiac troponin C (cTnC) is the site of calcium binding and the trigger for subsequent contraction. One widely studied calcium sensitizer is levosimendan. We have recently shown that when a covalent cTnC-levosimendan analogue is exchanged into cardiac muscle cells, they become constitutively active, demonstrating the potency of a covalent complex. We have also demonstrated that levosimendan reacts in vitro to form a reversible covalent thioimidate bond specifically with cysteine 84, unique to cTnC. In this study, we use mass spectrometry to show that the in vitro mechanism of action of levosimendan is consistent with an allosteric, reversible covalent inhibitor; to determine whether the presence of the cTnI switch peptide or changes in either Ca2+ concentration or pH modify the reaction kinetics; and to determine whether the reaction can occur with cTnC in situ in cardiac myofibrils. Using the derived kinetic rate constants, we predict the degree of covalently modified cTnC in vivo under the conditions studied. We observe that covalent bond formation would be highest under the acidotic conditions resulting from ischemia and discuss whether the predicted level could be sufficient to have therapeutic value. Irrespective of the in vivo mechanism of action for levosimendan, our results provide a rationale and basis for the development of reversible covalent drugs to target the failing heart.


Calcium Signaling/drug effects , Hydrazones , Myocardial Ischemia , Myofibrils , Pyridazines , Troponin C , Animals , Cysteine/metabolism , Humans , Hydrazones/chemistry , Hydrazones/pharmacokinetics , Hydrazones/pharmacology , Hydrogen-Ion Concentration , Myocardial Ischemia/metabolism , Myocardial Ischemia/pathology , Myofibrils/chemistry , Myofibrils/metabolism , Myofibrils/ultrastructure , Pyridazines/chemistry , Pyridazines/pharmacokinetics , Pyridazines/pharmacology , Simendan , Swine , Troponin C/chemistry , Troponin C/metabolism
18.
PLoS Pathog ; 14(1): e1006826, 2018 01.
Article En | MEDLINE | ID: mdl-29338055

To explore pathogenesis in a young Gerstmann-Sträussler-Scheinker Disease (GSS) patient, the corresponding mutation, an eight-residue duplication in the hydrophobic region (HR), was inserted into the wild type mouse PrP gene. Transgenic (Tg) mouse lines expressing this mutation (Tg.HRdup) developed spontaneous neurologic syndromes and brain extracts hastened disease in low-expressor Tg.HRdup mice, suggesting de novo formation of prions. While Tg.HRdup mice exhibited spongiform change, PrP aggregates and the anticipated GSS hallmark of a proteinase K (PK)-resistant 8 kDa fragment deriving from the center of PrP, the LGGLGGYV insertion also imparted alterations in PrP's unstructured N-terminus, resulting in a 16 kDa species following thermolysin exposure. This species comprises a plausible precursor to the 8 kDa PK-resistant fragment and its detection in adolescent Tg.HRdup mice suggests that an early start to accumulation could account for early disease of the index case. A 16 kDa thermolysin-resistant signature was also found in GSS patients with P102L, A117V, H187R and F198S alleles and has coordinates similar to GSS stop codon mutations. Our data suggest a novel shared pathway of GSS pathogenesis that is fundamentally distinct from that producing structural alterations in the C-terminus of PrP, as observed in other prion diseases such as Creutzfeldt-Jakob Disease and scrapie.


Gerstmann-Straussler-Scheinker Disease/genetics , Mutation , PrPSc Proteins/chemistry , PrPSc Proteins/genetics , Prion Diseases/genetics , Adult , Alleles , Amino Acid Sequence , Animals , Humans , Mice , Mice, Transgenic , Middle Aged , Peptide Fragments/genetics , PrPSc Proteins/metabolism , Protein Domains/genetics , Protein Precursors/chemistry , Protein Precursors/genetics
19.
J Mol Cell Cardiol ; 101: 134-144, 2016 Dec.
Article En | MEDLINE | ID: mdl-27825981

In cardiac and skeletal muscle, the troponin complex turns muscle contraction on and off in a calcium-dependent manner. Many small molecules are known to bind to the troponin complex to modulate its calcium binding affinity, and this may be useful in a broad range of conditions in which striated muscle function is compromised, such as congestive heart failure. As a tool for developing drugs specific for the cardiac isoform of troponin, we have designed a chimeric construct (cChimera) consisting of the regulatory N-terminal domain of cardiac troponin C (cNTnC) fused to the switch region of cardiac troponin I (cTnI), mimicking the key binding event that turns on muscle contraction. We demonstrate by solution NMR spectroscopy that cChimera faithfully reproduces the native interface between cTnI and cNTnC. We determined that small molecules based on diphenylamine can bind to cChimera with a KD as low as 10µM. Solution NMR structures show that minimal structural perturbations in cChimera are needed to accommodate 3-methyldiphenylamine (3-mDPA), which is probably why it binds with higher affinity than previously studied compounds like bepridil, despite its significantly smaller size. The unsubstituted aromatic ring of 3-mDPA binds to an inner hydrophobic pocket adjacent to the central beta sheet of cNTnC. However, the methyl-substituted ring is able to bind in two different orientations, either inserting into the cNTnC-cTnI interface or "flipping out" to form contacts primarily with helix C of cNTnC. Our work suggests that preservation of the native interaction between cNTnC and cTnI is key to the development of a high affinity cardiac troponin-specific drug.


Drug Discovery , Models, Molecular , Troponin/chemistry , Troponin/metabolism , Animals , Binding Sites , Humans , Magnetic Resonance Spectroscopy , Molecular Conformation , Protein Binding , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Structure-Activity Relationship , Troponin C/chemistry , Troponin C/metabolism , Troponin I/chemistry , Troponin I/metabolism
20.
Biochemistry ; 55(43): 6032-6045, 2016 Nov 01.
Article En | MEDLINE | ID: mdl-27673371

The binding of Ca2+ to cardiac troponin C (cTnC) triggers contraction in heart muscle. In the diseased heart, the myocardium is often desensitized to Ca2+, which leads to impaired contractility. Therefore, compounds that sensitize cardiac muscle to Ca2+ (Ca2+-sensitizers) have therapeutic promise. The only Ca2+-sensitizer used regularly in clinical settings is levosimendan. While the primary target of levosimendan is thought to be cTnC, the molecular details of this interaction are not well understood. In this study, we used mass spectrometry, computational chemistry, and nuclear magnetic resonance spectroscopy to demonstrate that levosimendan reacts specifically with cysteine 84 of cTnC to form a reversible thioimidate bond. We also showed that levosimendan only reacts with the active, Ca2+-bound conformation of cTnC. Finally, we propose a structural model of levosimendan bound to cTnC, which suggests that the Ca2+-sensitizing function of levosimendan is due to stabilization of the Ca2+-bound conformation of cTnC.


Calcium/metabolism , Cardiotonic Agents/metabolism , Hydrazones/metabolism , Myocardium/metabolism , Pyridazines/metabolism , Troponin C/metabolism , Carbon-13 Magnetic Resonance Spectroscopy , Protein Binding , Simendan
...