Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 355: 120453, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38430886

RESUMEN

Organophosphonates (OPs) are a unique group of natural and synthetic compounds, characterised by the presence of a stable, hard-to-cleave bond between the carbon and phosphorus atoms. OPs exhibit high resistance to abiotic degradation, excellent chelating properties and high biological activity. Despite the huge and increasing scale of OP production and use worldwide, little is known about their transportation and fate in the environment. Available data are dominated by information concerning the most recognised organophosphonate - the herbicide glyphosate - while other OPs have received little attention. In this paper, a comprehensive review of the current state of knowledge about natural and artificial OPs is presented (including glyphosate). Based on the available literature, a number of knowledge gaps have been identified that need to be filled in order to understand the environmental effects of these abundant compounds. Special attention has been given to GHG-related processes, with a particular focus on CH4. This stems from the recent discovery of OP-dependent CH4 production in aqueous environments under aerobic conditions. The process has changed the perception of the biogeochemical cycle of CH4, since it was previously thought that biological methane formation was only possible under anaerobic conditions. However, there is a lack of knowledge on whether OP-associated methane is also formed in soils. Moreover, it remains unclear whether anthropogenic OPs affect the CH4 cycle, a concern of significant importance in the context of the increasing rate of global warming. The literature examined in this review also calls for additional research into the date of OPs in waste and sewage and in their impact on environmental microbiomes.


Asunto(s)
Gases de Efecto Invernadero , Calentamiento Global , Suelo , Aguas del Alcantarillado , Metano/análisis , Dióxido de Carbono/análisis , Óxido Nitroso/análisis
2.
Biology (Basel) ; 12(11)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37998019

RESUMEN

The rocks surrounding Wieliczka salt deposits are an extreme, deep subsurface ecosystem that as we studied previously harbors many microorganisms, including methanotrophs. In the presented research bacterial community structure of the Wieliczka Salt Mine was determined as well as the methanotrophic activity of the natural microbiome. Finally, an enrichment culture of methane-consuming methanotrophs was obtained. The research material used in this study consisted of rocks surrounding salt deposits in the Wieliczka Salt Mine. DNA was extracted directly from the pristine rock material, as well as from rocks incubated in an atmosphere containing methane and mineral medium, and from a methanotrophic enrichment culture from this ecosystem. As a result, the study describes the composition of the microbiome in the rocks surrounding the salt deposits, while also explaining how biodiversity changes during the enrichment culture of the methanotrophic bacterial community. The contribution of methanotrophic bacteria ranged from 2.614% in the environmental sample to 64.696% in the bacterial culture. The methanotrophic enrichment culture was predominantly composed of methanotrophs from the genera Methylomonas (48.848%) and Methylomicrobium (15.636%) with methane oxidation rates from 3.353 ± 0.105 to 4.200 ± 0.505 µmol CH4 mL-1 day-1.

3.
Sci Total Environ ; 800: 149551, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34392224

RESUMEN

Due to changes in the energy market, it is projected that lignite excavation will be reduced in the near future. Cessation of exploitation is associated with restitution of natural water conditions and flooding of the resources left in the mines. Flooded lignite mines are a potential source of greenhouse gases (GHG) (CH4, CO2 and N2O), which should be monitored due to growing environmental concerns. Here, we aim to recognize GHG release from the lignites collected from the main deposits of Poland, Slovenia and Serbia. GHG production was studied along with a range of physical and chemical parameters that are crucial for microbial growth and activity. The microcosm experiments showed that the main gas emitted from the lignites was carbon dioxide. Daily CO2 production was highly variable. The highest values were recorded for detroxylitic lignite collected from the Konin deposit (402.05 nmol CO2 g-1 day-1) while the lowest were for the Kolubara xylitic lignite (19.64 nmol CO2 g-1 day-1). Methane production was much lower and ranged from nearly zero to 66.75 nmol g dry mass-1 d-1. Nitrous oxide production was not detected. It was found that CO2 production, being a general measure of microbial activity, was positively affected by NO3- concentration and redox potential. With respect to methane formation, the lower atmospheric oxygen exposure of the sample from the Velenje underground mine compared to the samples from the opencast mines has been identified as a possible cause of the high methane production. The overall global warming potential (GWP) of the gases released by xylitic lignite was lowest among the samples. Preferential extraction of the detritic lignites is suggested as a means to reduce GHG emissions from the abandoned lignite mines.


Asunto(s)
Gases de Efecto Invernadero , Dióxido de Carbono/análisis , Carbón Mineral , Efecto Invernadero , Gases de Efecto Invernadero/análisis , Metano/análisis , Óxido Nitroso/análisis , Suelo
4.
Biology (Basel) ; 10(8)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34440022

RESUMEN

Methane and carbon dioxide are one of the most important greenhouse gases and significant components of the carbon cycle. Biogeochemical methane transformation may occur even in the extreme conditions of deep subsurface ecosystems. This study presents methane-related biological processes in saline sediments of the Miocene Wieliczka Formation, Poland. Rock samples (W2, W3, and W4) differed in lithology (clayey salt with veins of fibrous salt and lenses of gypsum and anhydrite; siltstone and sandstone; siltstone with veins of fibrous salt and lenses of anhydrite) and the accompanying salt type (spiza salts or green salt). Microbial communities present in the Miocene strata were studied using activity measurements and high throughput sequencing. Biological activity (i.e., carbon dioxide and methane production or methane oxidation) occurred in all of the studied clayey salt and siltstone samples but mainly under water-saturated conditions. Microcosm studies performed at elevated moisture created more convenient conditions for the activity of both methanogenic and methanotrophic microorganisms than the intact sediments. This points to the fact that water activity is an important factor regulating microbial activity in saline subsurface sediments. Generally, respiration was higher in anaerobic conditions and ranged from 36 ± 2 (W2200%t.w.c) to 48 ± 4 (W3200%t.w.c) nmol CO2 gdw-1 day-1. Methanogenic activity was the highest in siltstone and sandstone (W3, 0.025 ± 0.018 nmol CH4 gdw-1 day-1), while aerobic methanotrophic activity was the highest in siltstone with salt and anhydrite (W4, 220 ± 66 nmol CH4 gdw-1 day-1). The relative abundance of CH4-utilizing microorganisms (Methylomicrobium, Methylomonas, Methylocystis) constituted 0.7-3.6% of all taxa. Methanogens were represented by Methanobacterium (0.01-0.5%). The methane-related microbes were accompanied by a significant number of unclassified microorganisms (3-64%) and those of the Bacillus genus (4.5-91%). The stable isotope composition of the CO2 and CH4 trapped in the sediments suggests that methane oxidation could have influenced δ13CCH4, especially in W3 and W4.

5.
Environ Res ; 196: 110433, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33166536

RESUMEN

The biofilms and water samples from a model installation built of PVC-U, PE-HD and cast iron pipes were investigated using standard heterotrophic plate count and 16S rRNA Next Generation Sequencing. The results of the high throughput identification imply that the construction material strongly influences the microbiome composition. PVC-U and PE-HD pipes were dominated with Proteobacteria (54-60%) while the cast pipe was overgrown by Nitrospirae (64%). It was deduced that the plastic pipes create a more convenient environment for the potentially pathogenic taxa than the cast iron. The 7-year old biofilms were described as complex habitats with sharp oxidation-reduction gradients, where co-existence of methanogenic and methanotrophic microbiota takes place. Furthermore, it was found that the drinking water distribution systems (DWDS) are a useful tool for studying the ecology of rare bacterial phyla. New ecophysiological aspects were described for Aquihabitans, Thermogutta and Vampirovibrio. The discrepancy between identity of HPC-derived bacteria and NGS-revealed composition of biofilm and water microbiomes point to the need of introducing new diagnostical protocols to enable proper assessment of the drinking water safety, especially in DWDSs operating without disinfection.


Asunto(s)
Agua Potable , Microbiota , Biopelículas , ARN Ribosómico 16S/genética , Microbiología del Agua , Abastecimiento de Agua
6.
Sci Total Environ ; 730: 138921, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32388369

RESUMEN

Biogas production and microbial community structure were analyzed as an effect of biochar addition to a fermentation sludge containing sugar beet pulp. Positive effects of the treatment including an increase in process efficiency and better biogas quality were noted. The effect of biochar on AD (anaerobic digestion process) microbial communities was investigated after total DNA extraction from biochar-amended fermentation mixtures by PCR amplification of bacterial 16S rRNA gene fragments and Illumina amplicon sequencing. A combination of microbiological and physico-chemical analyses was used to study the mechanism by which biochar influences the process of anaerobic digestion of sugar beep pulp. It was found that the main reason of the changes in biogas production was the reshaping of the microbial communities, in particular enrichment of Bacteroidales and Clostridiales. It was proposed that biochar, in addition to being a conductor for mediating interspecies electron transfer, serves also as a habitat for hydrolytic bacteria. It was elucidated that the main driving force for the preferential colonization of biochar surfaces is its hydrophobicity. The presented research indicates the high potential of biochar to stimulate the methane fermentation process.


Asunto(s)
Beta vulgaris , Anaerobiosis , Biocombustibles , Reactores Biológicos , Carbón Orgánico , Metano , ARN Ribosómico 16S , Azúcares
7.
Int J Mol Sci ; 20(18)2019 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-31500341

RESUMEN

Methanogenesis occurs in many natural environments and is used in biotechnology for biogas production. The efficiency of methane production depends on the microbiome structure that determines interspecies electron transfer. In this research, the microbial community retrieved from mining subsidence reservoir sediment was used to establish enrichment cultures on media containing different carbon sources (tryptone, yeast extract, acetate, CO2/H2). The microbiome composition and methane production rate of the cultures were screened as a function of the substrate and transition stage. The relationships between the microorganisms involved in methane formation were the major focus of this study. Methanogenic consortia were identified by next generation sequencing (NGS) and functional genes connected with organic matter transformation were predicted using the PICRUSt approach and annotated in the KEGG. The methane production rate (exceeding 12.8 mg CH4 L-1 d-1) was highest in the culture grown with tryptone, yeast extract, and CO2/H2. The analysis of communities that developed on various carbon sources casts new light on the ecophysiology of the recently described bacterial phylum Caldiserica and methanogenic Archaea representing the genera Methanomassiliicoccus and Methanothrix. Furthermore, it is hypothesized that representatives of Caldiserica may support hydrogenotrophic methanogenesis.


Asunto(s)
Sedimentos Geológicos/microbiología , Metano/biosíntesis , Microbiota , Biodiversidad , Biocombustibles , Carbono/metabolismo , Hidrógeno/metabolismo , Temperatura
8.
Microb Ecol ; 77(3): 701-712, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30171270

RESUMEN

Methanotrophic bacteria are able to use methane (CH4) as a sole carbon and energy source. Photochemical oxidation of methane takes place in the stratosphere, whereas in the troposphere, this process is carried out by methanotrophic bacteria. On the one hand, it is known that the efficiency of biological CH4 oxidation is dependent on the mode of land use but, on the other hand, the knowledge of this impact on methanotrophic activity (MTA) is still limited. Thus, the aim of the study was to determine the CH4 oxidation ability of methanotrophic bacteria inhabiting selected arable and no-tillage soils from the Lublin region (Albic Luvisol, Brunic Arenosol, Haplic Chernozem, Calcaric Cambisol) and to identify bacteria involved in this process. MTA was determined based on incubation of soils in air with addition of methane at the concentrations of 0.002, 0.5, 1, 5, and 10%. The experiment was conducted in a temperature range of 10-30 °C. Methanotrophs in soils were identified by next-generation sequencing (NGS). MTA was confirmed in all investigated soils (in the entire range of the tested methane concentrations and temperatures, except for the arable Albic Luvisol). Importantly, the MTA values in the no-tillage soil were nearly two-fold higher than in the cultivated soils. Statistical analysis indicated a significant influence of land use, type of soil, temperature, and especially methane concentration (p < 0.05) on MTA. Metagenomic analysis confirmed the presence of methanotrophs from the genus Methylocystis (Alphaproteobacteria) in the studied soils (except for the arable Albic Luvisol). Our results also proved the ability of methanotrophic bacteria to oxidize methane although they constituted only up to 0.1% of the total bacterial community.


Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Metano/metabolismo , Microbiología del Suelo , Procesos Autotróficos , Bacterias/clasificación , Bacterias/genética , ADN Bacteriano/genética , Metano/química , Oxidación-Reducción , Filogenia , Polonia , ARN Ribosómico 16S/genética , Suelo/química
9.
World J Microbiol Biotechnol ; 33(8): 154, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28681284

RESUMEN

The main goal of the study was to find differences in the bacterial community structure resulting from different ways of meadow management in order to get the first insight into microbial biodiversity in meadow samples. The next generation sequencing technique (454-pyrosequencing) was accompanied with the community level physiological profiling (CLPP) method in order to acquire combined knowledge of both genetic and catabolic bacterial fingerprinting of two studied meadows (hayland and pasture). Soil samples (FAO: Mollic Gleysol) were taken in April 2015 from the surface layer (0-20 cm). Significant differences of the bacterial community structure between the two analyzed meadows resulted from different land mode were evidenced by pyrosequencing and CLPP techniques. It was found that Alpha- and Gammaproteobacteria dominated in the hayland, whereas Delta- and Betaproteobacteria prevailed in the pasture. Additionally, the hayland displayed lower Firmicutes diversity than the pasture. Predominant bacterial taxa: Acidobacteria, together with Chloroflexi and Bacteroidetes seemed to be insensitive to the mode of land use, because their abundance remained at a similar level in the both studied meadows. The CLPP analysis confirmed much faster degradation of the carbon sources by microorganisms from the hayland rather than from the pasture. Amino acids were the most favoured carbon source groups utilized by microorganisms in contrast to carbohydrates, which were utilized to the lowest extent. The study clearly proved that the consequences of even moderate anthropogenic management are always changes in bacterial community structure and their metabolic activity. Bacterial taxa that are sensitive and resistant on modes of land use were determined.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Biodiversidad , Pradera , Microbiología del Suelo , Carbono/metabolismo , Dermatoglifia del ADN , ADN Bacteriano/análisis , ADN Bacteriano/genética , Ecosistema , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenoma , Filogenia , Polonia , ARN Ribosómico 16S/genética , Suelo/química
10.
Springerplus ; 5: 565, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27247862

RESUMEN

The aim of the study was to demonstrate the impact of soil agricultural usage on the abundance of ammonifying bacteria (AB) and their activity, expressed as arginine ammonification (AA). Five agriculturally exploited types of soils (FAO): Haplic Luvisol, Brunic Arenosol, Mollic Gleysol, Eutric Fluvisol, and Rendzina Leptosol were studied. The controls were non-agricultural soils of the same type located in close proximity to agricultural sites. The tested soils varied in terms of pH (4.18-7.08), total carbon (8.39-34.90 g kg(-1)), easily degradable carbon content (0.46-1.11 g kg(-1)), moisture (5.20-13.50 %), and nitrogen forms (mg kg(-1)): 1.68-27.17, 0.036-0.862, 0.012-3.389 for nitrate nitrogen, nitrite nitrogen, and ammonia nitrogen, respectively. The AB abundance in agricultural soils ranged from 1.1 to 6.4 × 10(4) cfu g(-1), while in the controls it was significantly higher-from 2.0 to 110 × 10(4) cfu g(-1) of soil. Also, AA in the controls was three-times higher than in the agricultural soils. Strong associations between AA and the abundance of AB in the control (r = 0.954***) and agricultural soils (r = 0.833***) were proved. In the agricultural soils, the AB abundance and AA were influenced by pH (r = 0.746*** and r = 0.520***) and carbon content (r = 0.488*** and r = 0.391***). The AB abundance was also affected by easily degradable carbon (r = 0.517**) and nitrite nitrogen (r = 0.376*), whilst ammonium nitrogen influenced AA (r = 0.451*). Our results indicate that the abundance of AB and AA may be good indicators of soil biological conditions.

11.
Water Air Soil Pollut ; 227: 130, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27076689

RESUMEN

Soil microbial communities play an important role in the biodegradation of different petroleum derivates, including hydrocarbons. Also other biological factors such as enzyme and respiration activities and microbial abundance are sensitive to contamination with petroleum derivates. The aim of this study was to evaluate the response of autochthonic microbial community and biological parameters (respiration, dehydrogenase and catalase activities, total microorganisms count) on contamination with car fuels and engine oils. The surface layer (0-20 cm) of Mollic Gleysol was used for the experiment. In laboratory conditions, soil was contaminated with the following petroleum substances: car fuels (petrol, diesel) and car engine oils (new and waste-after 10,000 km). The results demonstrated that, among the investigated hydrocarbon substances, petrol addition seemed to be the most toxic for the microbial activity of the investigated soil. The toxicity of the used hydrocarbon substances to microorganisms might be summarized as follows: diesel > new oil > waste oil > petrol. Species belonging to the genera Micrococcus and Rhodococcus were noted as the major autochthonic bacteria being present in soil contaminated with new automobile oil, whereas species of the genera Bacillus sp. and Paenibacillus sp. were identified in the combination treated with waste oil.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...