Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Opt Express ; 31(24): 40210-40220, 2023 Nov 20.
Article En | MEDLINE | ID: mdl-38041327

In super-resolution structured illumination microscopy (SR-SIM) the separation between opposing laser spots in the back focal plane of the objective lens affects the pattern periodicity, and, thus, the resulting spatial resolution. Here, we introduce a novel hexagonal prism telescope which allows us to seamlessly change the separation between parallel laser beams for 3 pairs of beams, simultaneously. Each end of the prism telescope is composed of 6 Littrow prisms, which are custom-ground so they can be grouped together in the form of a tight hexagon. By changing the distance between the hexagons, the beam separation can be adjusted. This allows us to easily control the position of opposing laser spots in the back focal plane and seamlessly adjust the spatial frequency of the resulting interference pattern. This also enables the seamless transition from 2D-SIM to total internal reflection fluorescence (TIRF) excitation using objective lenses with a high numerical aperture. In linear SR-SIM the highest spatial resolution can be achieved for extreme TIRF angles. The prism telescope allows us to investigate how the spatial resolution and contrast depend on the angle of incidence near, at, and beyond the critical angle. We demonstrate this by imaging the cytoskeleton and plasma membrane of liver sinusoidal endothelial cells, which have a characteristic morphology consisting of thousands of small, transcellular pores that can only be observed by super-resolution microscopy.

2.
Sci Rep ; 13(1): 19121, 2023 11 05.
Article En | MEDLINE | ID: mdl-37926735

Oxidized albumin (oxHSA) is elevated in several pathological conditions, such as decompensated cirrhosis, acute on chronic liver failure and liver mediated renal failure. Patient derived oxidized albumin was previously shown to be an inflammatory mediator, and in normal serum levels of oxHSA are low. The removal from circulation of oxidized albumins is therefore likely required for maintenance of homeostasis. Liver sinusoidal endothelial cells (LSEC) are prominent scavenger cells specialized in removal of macromolecular waste. Given that oxidized albumin is mainly cleared by the liver, we hypothesized the LSEC are the site of uptake in the liver. In vivo oxHSA was cleared rapidly by the liver and distributed to mainly the LSEC. In in vitro studies LSEC endocytosed oxHSA much more than other cell populations isolated from the liver. Furthermore, it was shown that the uptake was mediated by the stabilins, by affinity chromatography-mass spectrometry, inhibiting uptake in LSEC with other stabilin ligands and showing uptake in HEK cells overexpressing stabilin-1 or -2. oxHSA also inhibited the uptake of other stabilin ligands, and a 2-h challenge with 100 µg/mL oxHSA reduced LSEC endocytosis by 60% up to 12 h after. Thus the LSEC and their stabilins mediate clearance of highly oxidized albumin, and oxidized albumin can downregulate their endocytic capacity in turn.


Endothelial Cells , Liver , Humans , Albumins , Endothelial Cells/physiology , Endothelium , Hepatocytes , Ligands
3.
Opt Express ; 31(18): 29156-29165, 2023 Aug 28.
Article En | MEDLINE | ID: mdl-37710721

Super-resolved structured illumination microscopy (SR-SIM) is among the most flexible, fast, and least perturbing fluorescence microscopy techniques capable of surpassing the optical diffraction limit. Current custom-built instruments are easily able to deliver two-fold resolution enhancement at video-rate frame rates, but the cost of the instruments is still relatively high, and the physical size of the instruments based on the implementation of their optics is still rather large. Here, we present our latest results towards realizing a new generation of compact, cost-efficient, and high-speed SR-SIM instruments. Tight integration of the fiber-based structured illumination microscope capable of multi-color 2D- and TIRF-SIM imaging, allows us to demonstrate SR-SIM with a field of view of up to 150 × 150 µm2 and imaging rates of up to 44 Hz while maintaining highest spatiotemporal resolution of less than 100 nm. We discuss the overall integration of optics, electronics, and software that allowed us to achieve this, and then present the fiberSIM imaging capabilities by visualizing the intracellular structure of rat liver sinusoidal endothelial cells, in particular by resolving the structure of their trans-cellular nanopores called fenestrations.

4.
Sci Rep ; 13(1): 13390, 2023 08 17.
Article En | MEDLINE | ID: mdl-37591901

Xanthines such as caffeine and theobromine are among the most consumed psychoactive stimulants in the world, either as natural components of coffee, tea and chocolate, or as added ingredients. The present study assessed if xanthines affect liver sinusoidal endothelial cells (LSEC). Cultured primary rat LSEC were challenged with xanthines at concentrations typically obtained from normal consumption of xanthine-containing beverages, food or medicines; and at higher concentrations below the in vitro toxic limit. The fenestrated morphology of LSEC were examined with scanning electron and structured illumination microscopy. All xanthine challenges had no toxic effects on LSEC ultrastructure as judged by LSEC fenestration morphology, or function as determined by endocytosis studies. All xanthines in high concentrations (150 µg/mL) increased fenestration frequency but at physiologically relevant concentrations, only theobromine (8 µg/mL) showed an effect. LSEC porosity was influenced only by high caffeine doses which also shifted the fenestration distribution towards smaller pores. Moreover, a dose-dependent increase in fenestration number was observed after caffeine treatment. If these compounds induce similar changes in vivo, age-related reduction of LSEC porosity can be reversed by oral treatment with theobromine or with other xanthines using targeted delivery.


Caffeine , Theobromine , Animals , Rats , Caffeine/pharmacology , Xanthine , Theobromine/pharmacology , Endothelial Cells , Liver
5.
Biomaterials ; 290: 121817, 2022 11.
Article En | MEDLINE | ID: mdl-36208587

Chronic liver disease can lead to liver fibrosis and ultimately cirrhosis, which is a significant health burden and a major cause of death worldwide. Reliable in vitro models are lacking and thus mono-cultures of cell lines are still used to study liver disease and evaluate candidate anti-fibrotic drugs. We established functional multicellular liver spheroid (MCLS) cultures using primary mouse hepatocytes, hepatic stellate cells, liver sinusoidal endothelial cells and Kupffer cells. Cell-aggregation and spheroid formation was enhanced with 96-well U-bottom plates generating over ±700 spheroids from one mouse. Extensive characterization showed that MCLS cultures contain functional hepatocytes, quiescent stellate cells, fenestrated sinusoidal endothelium and responsive Kupffer cells that can be maintained for 17 days. MCLS cultures display a fibrotic response upon chronic exposure to acetaminophen, and present steatosis and fibrosis when challenged with free fatty acid and lipopolysaccharides, reminiscent of non-alcoholic fatty liver disease (NAFLD) stages. Treatment of MCLS cultures with potential anti-NAFLD drugs such as Elafibranor, Lanifibranor, Pioglitazone and Obeticholic acid shows that all can inhibit steatosis, but only Elafibranor and especially Lanifibranor inhibit fibrosis. Therefore, primary mouse MCLS cultures can be used to model acute and chronic liver disease and are suitable for the assessment of anti-NAFLD drugs.


Non-alcoholic Fatty Liver Disease , Spheroids, Cellular , Mice , Animals , Spheroids, Cellular/metabolism , Endothelial Cells , Non-alcoholic Fatty Liver Disease/metabolism , Liver Cirrhosis/metabolism , Liver/pathology , Hepatocytes
6.
Int J Mol Sci ; 23(17)2022 Aug 30.
Article En | MEDLINE | ID: mdl-36077249

Liver sinusoidal endothelial cells (LSECs) facilitate the efficient transport of macromolecules and solutes between the blood and hepatocytes. The efficiency of this transport is realized via transcellular nanopores, called fenestrations. The mean fenestration size is 140 ± 20 nm, with the range from 50 nm to 350 nm being mostly below the limits of diffraction of visible light. The cellular mechanisms controlling fenestrations are still poorly understood. In this study, we tested a hypothesis that both Rho kinase (ROCK) and myosin light chain (MLC) kinase (MLCK)-dependent phosphorylation of MLC regulates fenestrations. We verified the hypothesis using a combination of several molecular inhibitors and by applying two high-resolution microscopy modalities: structured illumination microscopy (SIM) and scanning electron microscopy (SEM). We demonstrated precise, dose-dependent, and reversible regulation of the mean fenestration diameter within a wide range from 120 nm to 220 nm and the fine-tuning of the porosity in a range from ~0% up to 12% using the ROCK pathway. Moreover, our findings indicate that MLCK is involved in the formation of new fenestrations-after inhibiting MLCK, closed fenestrations cannot be reopened with other agents. We, therefore, conclude that the Rho-ROCK pathway is responsible for the control of the fenestration diameter, while the inhibition of MLCK prevents the formation of new fenestrations.


Actins , Myosin Light Chains , Actins/metabolism , Animals , Endothelial Cells/metabolism , Hepatocytes/metabolism , Liver/metabolism , Mice , Microscopy, Electron, Scanning , Myosin Light Chains/metabolism , Myosin-Light-Chain Kinase/metabolism , Phosphorylation , rho-Associated Kinases/metabolism
7.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article En | MEDLINE | ID: mdl-34782474

Visualization of three-dimensional (3D) morphological changes in the subcellular structures of a biological specimen is a major challenge in life science. Here, we present an integrated chip-based optical nanoscopy combined with quantitative phase microscopy (QPM) to obtain 3D morphology of liver sinusoidal endothelial cells (LSEC). LSEC have unique morphology with small nanopores (50-300 nm in diameter) in the plasma membrane, called fenestrations. The fenestrations are grouped in discrete clusters, which are around 100 to 200 nm thick. Thus, imaging and quantification of fenestrations and sieve plate thickness require resolution and sensitivity of sub-100 nm along both the lateral and the axial directions, respectively. In chip-based nanoscopy, the optical waveguides are used both for hosting and illuminating the sample. The fluorescence signal is captured by an upright microscope, which is converted into a Linnik-type interferometer to sequentially acquire both superresolved images and phase information of the sample. The multimodal microscope provided an estimate of the fenestration diameter of 119 ± 53 nm and average thickness of the sieve plates of 136.6 ± 42.4 nm, assuming the constant refractive index of cell membrane to be 1.38. Further, LSEC were treated with cytochalasin B to demonstrate the possibility of precise detection in the cell height. The mean phase value of the fenestrated area in normal and treated cells was found to be 161 ± 50 mrad and 109 ± 49 mrad, respectively. The proposed multimodal technique offers nanoscale visualization of both the lateral size and the thickness map, which would be of broader interest in the fields of cell biology and bioimaging.


Endothelial Cells/pathology , Endothelium/diagnostic imaging , Endothelium/pathology , Liver/diagnostic imaging , Microscopy/methods , Animals , Cell Membrane , Endothelium/metabolism , Fluorescence , Hepatocytes/pathology , Imaging, Three-Dimensional/methods , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Microscopy/instrumentation , Rats , Rats, Sprague-Dawley
8.
Front Physiol ; 12: 735573, 2021.
Article En | MEDLINE | ID: mdl-34588998

The porosity of liver sinusoidal endothelial cells (LSEC) ensures bidirectional passive transport of lipoproteins, drugs and solutes between the liver capillaries and the liver parenchyma. This porosity is realized via fenestrations - transcellular pores with diameters in the range of 50-300 nm - typically grouped together in sieve plates. Aging and several liver disorders severely reduce LSEC porosity, decreasing their filtration properties. Over the years, a variety of drugs, stimulants, and toxins have been investigated in the context of altered diameter or frequency of fenestrations. In fact, any change in the porosity, connected with the change in number and/or size of fenestrations is reflected in the overall liver-vascular system crosstalk. Recently, several commonly used medicines have been proposed to have a beneficial effect on LSEC re-fenestration in aging. These findings may be important for the aging populations of the world. In this review we collate the literature on medicines, recreational drugs, hormones and laboratory tools (including toxins) where the effect LSEC morphology was quantitatively analyzed. Moreover, different experimental models of liver pathology are discussed in the context of fenestrations. The second part of this review covers the cellular mechanisms of action to enable physicians and researchers to predict the effect of newly developed drugs on LSEC porosity. To achieve this, we discuss four existing hypotheses of regulation of fenestrations. Finally, we provide a summary of the cellular mechanisms which are demonstrated to tune the porosity of LSEC.

9.
Front Physiol ; 10: 6, 2019.
Article En | MEDLINE | ID: mdl-30809151

Healthy liver sinusoidal endothelial cells (LSECs) maintain liver homeostasis, while LSEC dysfunction was suggested to coincide with defenestration. Here, we have revisited the relationship between LSEC pro-inflammatory response, defenestration, and impairment of LSEC bioenergetics in non-alcoholic fatty liver disease (NAFLD) in mice. We characterized inflammatory response, morphology as well as bioenergetics of LSECs in early and late phases of high fat diet (HFD)-induced NAFLD. LSEC phenotype was evaluated at early (2-8 week) and late (15-20 week) stages of NAFLD progression induced by HFD in male C57Bl/6 mice. NAFLD progression was monitored by insulin resistance, liver steatosis and obesity. LSEC phenotype was determined in isolated, primary LSECs by immunocytochemistry, mRNA gene expression (qRT-PCR), secreted prostanoids (LC/MS/MS) and bioenergetics (Seahorse FX Analyzer). LSEC morphology was examined using SEM and AFM techniques. Early phase of NAFLD, characterized by significant liver steatosis and prominent insulin resistance, was related with LSEC pro-inflammatory phenotype as evidenced by elevated ICAM-1, E-selectin and PECAM-1 expression. Transiently impaired mitochondrial phosphorylation in LSECs was compensated by increased glycolysis. Late stage of NAFLD was featured by prominent activation of pro-inflammatory LSEC phenotype (ICAM-1, E-selectin, PECAM-1 expression, increased COX-2, IL-6, and NOX-2 mRNA expression), activation of pro-inflammatory prostaglandins release (PGE2 and PGF2α) and preserved LSEC bioenergetics. Neither in the early nor in the late phase of NAFLD, were LSEC fenestrae compromised. In the early and late phases of NAFLD, despite metabolic and pro-inflammatory burden linked to HFD, LSEC fenestrae and bioenergetics are functionally preserved. These results suggest prominent adaptive capacity of LSECs that might mitigate NAFLD progression.

10.
Hepatology ; 69(2): 876-888, 2019 02.
Article En | MEDLINE | ID: mdl-30137644

The fenestrae of liver sinusoidal endothelial cells (LSECs) allow passive transport of solutes, macromolecules, and particulate material between the sinusoidal lumen and the liver parenchymal cells. Until recently, fenestrae and fenestrae-associated structures were mainly investigated using electron microscopy on chemically fixed LSECs. Hence, the knowledge about their dynamic properties has remained to date largely elusive. Recent progress in atomic force microscopy (AFM) has allowed the study of live cells in three dimensions (X, Y, and Z) over a prolonged time (t) and this at unprecedented speeds and resolving power. Hence, we employed the latest advances in AFM imaging on living LSECs. As a result, we were able to monitor the position, size, and number of fenestrae and sieve plates using four-dimensional AFM (X, Y, Z, and t) on intact LSECs in vitro. During these time-lapse experiments, dynamic data were collected on the origin and morphofunctional properties of the filtration apparatus of LSECs. We present structural evidence on single laying and grouped fenestrae, thereby elucidating their dynamic nature from formation to disappearance. We also collected data on the life span of fenestrae. More especially, the formation and closing of entire sieve plates were observed, and how the continuous rearrangement of sieve plates affects the structure of fenestrae within them was recorded. We observed also the dawn and rise of fenestrae-forming centers and defenestration centers in LSECs under different experimental conditions. Conclusion: Utilizing a multimodal biomedical high-resolution imaging technique we collected fine structural information on the life span, formation, and disappearance of LSEC fenestrae; by doing so, we also gathered evidence on three different pathways implemented in the loss of fenestrae that result in defenestrated LSECs.


Endothelial Cells/physiology , Liver/cytology , Animals , Cytochalasin B , Depsipeptides , Mice , Microscopy, Atomic Force
11.
Micron ; 101: 48-53, 2017 Oct.
Article En | MEDLINE | ID: mdl-28623691

Liver sinusoidal endothelial cells present unique morphology characterized by the presence of transmembrane pores called fenestrations. The size and number of fenestrations in live cells change dynamically in response to variety of chemical and physical factors. Although scanning electron microscopy is a well-established method for investigation of fixed liver sinusoidal endothelial cells morphology, atomic force microscopy is the interesting alternative providing detailed 3D topographical information. Moreover, simple sample preparation, only by wet-fixation, minimizing sample preparation artifacts enable high-resolution atomic force microscopy-based measurements. In this work, we apply imaging methods based on atomic force microscopy, to describe characteristic features of glutaraldehyde-fixed primary murine liver sinusoidal endothelial cells, namely: mean fenestration diameter, porosity, and fenestrations frequency. We also investigate the effect of different tip apex radius on evaluation of single fenestration diameter. By quantitative description of fenestrations, we demonstrate that atomic force microscopy became a well competing tool for nondestructive quantitative investigation of the liver sinusoidal endothelial cell morphology.


Capillaries/cytology , Endothelial Cells/physiology , Endothelial Cells/ultrastructure , Liver/blood supply , Microscopy, Atomic Force , Animals , Biometry , Imaging, Three-Dimensional , Mice
...