Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18854, 2024 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143107

RESUMEN

The rapid and sensitive indicator of inflammation in the human body is C-Reactive Protein (CRP). Determination of CRP level is important in medical diagnostics because, depending on that factor, it may indicate, e.g., the occurrence of inflammation of various origins, oncological, cardiovascular, bacterial or viral events. In this study, we describe an interferometric sensor able to detect the CRP level for distinguishing between no-inflammation and inflammation states. The measurement head was made of a single mode optical fiber with a microsphere structure created at the tip. Its surface has been biofunctionalized for specific CRP bonding. Standardized CRP solutions were measured in the range of 1.9 µg/L to 333 mg/L and classified in the initial phase of the study. The real samples obtained from hospitalized patients with diagnosed Urinary Tract Infection or Urosepsis were then investigated. 27 machine learning classifiers were tested for labeling the phantom samples as normal or high CRP levels. With the use of the ExtraTreesClassifier we obtained an accuracy of 95% for the validation dataset. The results of real samples classification showed up to 100% accuracy for the validation dataset using XGB classifier.


Asunto(s)
Proteína C-Reactiva , Aprendizaje Automático , Humanos , Proteína C-Reactiva/análisis , Infecciones Urinarias/diagnóstico , Infecciones Urinarias/orina , Interferometría/métodos , Inflamación/diagnóstico , Inflamación/orina , Sepsis/diagnóstico , Sepsis/orina , Técnicas Biosensibles/métodos , Fibras Ópticas
2.
J Biophotonics ; : e202300523, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38508857

RESUMEN

In this article we present the novel spectroscopy method supported with machine learning for real-time detection of infectious agents in wastewater. In the case of infectious diseases, wastewater monitoring can be used to detect the presence of inflammation biomarkers, such as the proposed C-reactive protein, for monitoring inflammatory conditions and mass screening during epidemics for early detection in communities of concern, such as hospitals, schools, and so on. The proposed spectroscopy method supported with machine learning for real-time detection of infectious agents will eliminate the need for time-consuming processes, which contribute to reducing costs. The spectra in range 220-750 nm were used for the study. We achieve accuracy of our prediction model up to 68% with using only absorption spectrophotometer and machine learning. The use of such a set makes the method universal, due to the possibility of using many different detectors.

4.
J Biophotonics ; 16(9): e202300095, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37285226

RESUMEN

The study presents an optical method supported by machine learning for discriminating urinary tract infections from an infection capable of causing urosepsis. The method comprises spectra of spectroscopy measurement of artificial urine samples with bacteria from solid cultures of clinical E. coli strains. To provide a reliable classification of results assistance of 27 algorithms was tested. We proved that is possible to obtain up to 97% accuracy of the measurement method with the use of use of machine learning. The method was validated on urine samples from 241 patients. The advantages of the proposed solution are the simplicity of the sensor, mobility, versatility, and low cost of the test.


Asunto(s)
Sepsis , Infecciones Urinarias , Humanos , Escherichia coli , Infecciones Urinarias/diagnóstico , Sepsis/diagnóstico , Sepsis/etiología , Aprendizaje Automático , Medición de Riesgo
5.
J Biophotonics ; 16(1): e202200213, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36251221

RESUMEN

One of the most important biomarkers used to determine inflammation is C-reactive protein (CRP). Its level, when it is within the range that does not define inflammation, informs about the risk of cardiovascular events. If the norm is exceeded and inflammation is detected in the body, CRP level can increase 1000 times within a few hours. The type of infection can also be determined based on the level of elevated CRP. All this makes CRP a very important element of diagnostics. A sensor based on low coherence interference is presented. Preliminary studies have shown that its sensitivity is 5.65 µg/L and the measurement time is short, <10 min. The entire system is built of commercially available components, which allow production cost minimalization. In addition, the user-friendly operation allows it to be operated by unqualified people. Due to these features, our solution is a promising alternative to commercially used enzyme-linked immunosorbent assay, which needs trained personnel to perform time-consuming measurement procedures.


Asunto(s)
Proteína C-Reactiva , Inflamación , Humanos , Biomarcadores , Ensayo de Inmunoadsorción Enzimática/métodos
6.
J Biophotonics ; 16(1): e202200172, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36222282

RESUMEN

In this paper, we present the design and the principle of operation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific immunoglobulin G (IgG) biophotonic sensor, which is based on the single-mode telecommunication fiber. We fabricated the sensor head at the face of the single mode fiber-28. Due to the process of bio-functionalization, our sensor has the ability to selectively detect the SARS-CoV-2 specific IgG antibodies. The results of preliminary tests allowed us to correctly determine the presence of antibodies in less than 1 min in 5 µl in a volume sample of concentration of 10 µg/ml, which according to studies, corresponds to the concentration of IgG antibodies in human serum. Additionally, the tested sample can be smaller than 5 µl in volume.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Inmunoglobulina G , Anticuerpos Antivirales
7.
J Biophotonics ; 16(1): e202200186, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36153308

RESUMEN

In this paper, we present an investigation of the influence of the temperature on the sensing of biological samples. We used biofunctionalized microsphere-based fiber-optic sensor to detect immunoglobulin G attached to the sensor head at temperatures relevant in biological research: 5°C, 25°C, and 55°C. The construction of the sensor allowed us to perform measurements in the small amount of solution. The results of our experiment confirm substantial changes in the measured reflected optical power, indicating the need to control the temperature during such measurements. The sensitivity of the sensor used in this research is 8.82 nW/°C. Coefficient R was also calculated and it equals 0.998, which shows good fit between theoretical linear fit and obtained measured data.


Asunto(s)
COVID-19 , Fibras Ópticas , Humanos , Temperatura , SARS-CoV-2 , Biología
8.
Materials (Basel) ; 15(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35407887

RESUMEN

Finesse coefficient is one of the most important parameters describing the properties of a resonant cavity. In this research, a mathematical investigation of the application of diamond structures in a fiber-optic Fabry-Perot measurement head to assess their impact on the finesse coefficient is proposed. We present modeled transmission functions of cavities utilizing a nitrogen-doped diamond, a boron-doped diamond, nanocrystalline diamond sheet and a silver mirror. The diamond structures were deposited using a microwave plasma-assisted chemical vapor deposition system. A SEM investigation of surface morphology was conducted. The modeling took into consideration the fiber-optic Fabry-Perot setup working in a reflective mode, with an external cavity and a light source of 1550 nm. A comparison of the mathematical investigation and experimental results is presented.

10.
Sci Rep ; 12(1): 3762, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260666

RESUMEN

Cervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors-to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors in the early diagnosis stage of cervical cancer. We demonstrate the preliminary research on cervical cancer assessment utilizing an optical sensor and a prediction algorithm. Since each matter is characterized by refractive index, measuring its value and detecting changes give information about the state of the tissue. The optical measurements provided datasets for training and validating the analyzing software. We present data preprocessing, machine learning results utilizing four algorithms (Random Forest, eXtreme Gradient Boosting, Naïve Bayes, Convolutional Neural Networks) and assessment of their performance for classification of tissue as healthy or sick. Our solution allows for rapid sample measurement and automatic classification of the results constituting a potential support tool for doctors.


Asunto(s)
Neoplasias del Cuello Uterino , Algoritmos , Teorema de Bayes , Femenino , Humanos , Aprendizaje Automático , Redes Neurales de la Computación , Máquina de Vectores de Soporte , Neoplasias del Cuello Uterino/diagnóstico
11.
Appl Opt ; 61(35): 10400-10407, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36607098

RESUMEN

A unique highly sensitive photonic crystal fiber, to the best of our knowledge, is investigated based on plasmonic material and magnetic fluid (MF) for the simultaneous measurement of temperature and magnetic field sensor. The designed sensor is explored by tracing the different parameters such as birefringence, coupling length, power spectrum, and the peak wavelength of the transmission intensity. The magnetic field and temperature computation are attained simultaneously by examining the linear fitting curve and the movement of transmission peaks. The obtained sensitivity for temperature is 7.1 nm/°C with an exposure range of 25°C to 100°C. In contrast, the magnetic field sensitivity is 12 nm/Oe with a detection range of 160-200 Oe. In addition, the resolutions are -1.245∘ C and 5.53 Oe for temperature and magnetic field, respectively. Our inspected sensor is used to detect extremely low and high values of magnetic fields. The investigated structure is presented with simplification, compactness, easy implementation, and high sensitivity, which is expected to be a good foundation for the advancement of optical sensing devices in the future applications of industries, security, small grids, and environmental systems.

12.
Sci Rep ; 11(1): 22402, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789732

RESUMEN

Mirrors are used in optical sensors and measurement setups. This creates a demand for mirrors made of new materials and having various properties tailored to specific applications. In this work, we propose silicon covered with a thin silicon nitride layer as a mirror for near-infrared measurements. SiN layer was deposited on a standard silicon wafer with a Low-Pressure Chemical Vapor Deposition furnace. Then, the created layer was investigated using ellipsometry and scanning electron microscope. Subsequently, the mirror was used as a reflecting surface in a Fabry-Perot fiber-optic interferometer. The mirror performance was investigated for wavelengths used in telecomunication (1310 nm and 1550 nm) and then compared with results obtained with the same measurement setup, with a silver mirror instead of silicon covered with SiN, as reference. Results showed that the proposed mirror can replace the silver one with satisfying results for investigated wavelengths.

13.
Sensors (Basel) ; 21(15)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34372220

RESUMEN

This study presents the microsphere-based fiber-optic sensor with the ZnO Atomic Layer Deposition coating thickness of 100 nm and 200 nm for temperature measurements. Metrological properties of the sensor were investigated over the temperature range from 100 °C to 300 °C, with a 10 °C step. The interferometric signal was used to monitor the integrity of the microsphere and its attachment to the connecting fiber. For the sensor with a 100 nm coating, a spectrum shift of the reflected signal and the optical power of the reflected signal were used to measure temperature, while only the optical power of the reflected signal was used in the sensor with a 200 nm coating. The R2 coefficient of the discussed sensors indicates a linear fit of over 0.99 to the obtained data. The sensitivity of the sensors, investigated in this study, equals 103.5 nW/°C and 19 pm/°C or 11.4 nW/°C for ZnO thickness of 200 nm and 100 nm, respectively.

14.
Sci Rep ; 11(1): 12600, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34131215

RESUMEN

We present an advanced multimodality characterization platform for simultaneous optical and electrochemical measurements of ferrocyanides. Specifically, we combined a fiber-optic Fabry-Perot interferometer with a three-electrode electrochemical setup to demonstrate a proof-of-principle of this hybrid characterization approach, and obtained feasibility data in its monitoring of electrochemical reactions in a boron-doped diamond film deposited on a silica substrate. The film plays the dual role of being the working electrode in the electrochemical reaction, as well as affording the reflectivity to enable the optical interferometry measurements. Optical responses during the redox reactions of the electrochemical process are presented. This work proves that simultaneous opto-electrochemical measurements of liquids are possible.

15.
Artículo en Inglés | MEDLINE | ID: mdl-33925072

RESUMEN

Difficulties with interpersonal communication experienced by individuals with autism spectrum disorders (ASD) significantly contribute to their underrepresentation in the workforce as well as problems experienced while in employment. Consistently, it is vital to understand how communication within the employment cycle of this group can be improved. This study aims to identify and analyze the possibilities of modifying the communication processes around recruitment, selection, onboarding, and job retention to address the specific characteristics and needs of the representatives of this group. This qualitative study is based on 15 in-depth interviews conducted with 21 field experts, i.e.,: therapists, job trainers, and entrepreneurs employing people with ASD. The findings of this research informed the creation of an inclusive communication model supporting the employment cycle of individuals with ASD. The most important recommendations within the model that was created include the modification of job advertisements, use of less structured job interviews, providing opportunities for mentorship, and supportive and non-direct, electronically mediated communication. To apply the above-mentioned solutions and take full advantage of the talents of people with ASD, it is also necessary to provide tailored sensitivity and awareness training programs for their direct addressees as well as their neurotypical colleagues, including managerial staff.


Asunto(s)
Trastorno del Espectro Autista , Comunicación , Empleo , Humanos , Investigación Cualitativa
16.
Materials (Basel) ; 14(2)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467152

RESUMEN

Optical phantoms are used to validate optical measurement methods. The stability of their optical parameters over time allows them to be used and stored over long-term periods, while maintaining their optical parameters. The aim of the presented research was to investigate the stability of fabricated porous phantoms, which can be used as a lung phantom in optical system. Measurements were performed in multiple series with an interval of 6 months, recreating the same conditions and using the same measuring system consisting of an integrating sphere, a coherent light source with a wavelength of 635 nm and a detector. Scattering and absorption parameters were determined on the basis of the measured reflectance and transmittance. The tested samples were made of silicone and glycerol in various proportions.

17.
Sci Rep ; 10(1): 19141, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33154464

RESUMEN

Fiber optic sensors are widely used in environmental, biological and chemical sensing. Due to the demanding environmental conditions in which they can be used, there is a risk of damaging the sensor measurement head placed in the measuring field. Sensors using nanolayers deposited upon the fiber structure are particularly vulnerable to damage. A thin film placed on the surface of the fiber end-face can be prone to mechanical damage or deteriorate due to unwanted chemical reactions with the surrounding agent. In this paper, we investigated a sensor structure formed with a Zinc Oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) on the tip of a single-mode fiber. A nanocrystalline diamond sheet (NDS) attached over the ZnO is described. The diamond structure was synthesized in a Microwave Plasma Assisted Chemical Vapor Deposition System. The deposition processes of the nanomaterials, the procedure of attaching NDS to the fiber end-face covered with ZnO, and the results of optical measurements are presented.

18.
Sensors (Basel) ; 20(17)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825233

RESUMEN

In this paper, the application of a microsphere-based fiber-optic sensor with a 200 nm zinc oxide (ZnO) coating, deposited by the Atomic Layer Deposition (ALD) method, for temperature measurements between 100 and 300 °C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor head in real-time, which allows for higher accuracy during measurements. The study has demonstrated that ZnO ALD-coated microsphere-based sensors can be successfully used for temperature measurements. The sensitivity of the tested device was found to be 103.5 nW/°C when the sensor was coupled with a light source of 1300 nm central wavelength. The measured coefficient R2 of the sensor head was over 0.99, indicating a good fit of the theoretical linear model to the measured experimental data.

19.
Sci Rep ; 10(1): 6446, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32296116

RESUMEN

Phantoms of biological tissues are materials that mimic the properties of real tissues. This study shows the development of phantoms with nanodiamond particles for calibration of T1 relaxation time in magnetic resonance imaging. Magnetic resonance imaging (MRI) is a commonly used and non-invasive method of detecting pathological changes inside the human body. Nevertheless, before a new MRI device is approved for use, it is necessary to calibrate it properly and to check its technical parameters. In this article, we present phantoms of tissue with diamond nanoparticles dedicated to magnetic resonance calibration. The method of producing phantoms has been described. As a result of our research, we obtained phantoms that were characterized by the relaxation time T1 the same as the relaxation time of the human tissue T1 = 810.5 ms. Furthermore, the use of diamond nanoparticles in phantoms allowed us to tune the T1 value of the phantoms which open the way to elaborated phantoms of other tissues in the future.


Asunto(s)
Materiales Biomiméticos/química , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética/instrumentación , Nanodiamantes/química , Fantasmas de Imagen , Calibración , Humanos , Hepatopatías/diagnóstico , Imagen por Resonancia Magnética/normas
20.
Materials (Basel) ; 12(13)2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31269665

RESUMEN

This paper reports the application of doped nanocrystalline diamond (NCD) films-nitrogen-doped NCD and boron-doped NCD-as reflective surfaces in an interferometric sensor of refractive index dedicated to the measurements of liquids. The sensor is constructed as a Fabry-Pérot interferometer, working in the reflective mode. The diamond films were deposited on silicon substrates by a microwave plasma enhanced chemical vapor deposition system. The measurements of refractive indices of liquids were carried out in the range of 1.3 to 1.6. The results of initial investigations show that doped NCD films can be successfully used in fiber-optic sensors of refractive index providing linear work characteristics. Their application can prolong the lifespan of the measurement head and open the way to measure biomedical samples and aggressive chemicals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA