Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(28): 19505-19520, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38979604

RESUMEN

The solvation of dissolved transition metal ions in lithium-ion battery electrolytes is not well-characterised experimentally, although it is important for battery degradation mechanisms governed by metal dissolution, deposition, and reactivity in solution. This work identifies the coordinating species in the Mn2+ and Ni2+ solvation spheres in LiPF6/LiTFSI-carbonate electrolyte solutions by examining the electron-nuclear spin interactions, which are probed by pulsed EPR and paramagnetic NMR spectroscopy. These techniques investigate solvation in frozen electrolytes and in the liquid state at ambient temperature, respectively, also probing the bound states and dynamics of the complexes involving the ions. Mn2+ and Ni2+ are shown to primarily coordinate to ethylene carbonate (EC) in the first coordination sphere, while PF6- is found primarily in the second coordination sphere, although a degree of contact ion pairing does appear to occur, particularly in electrolytes with low EC concentrations. NMR results suggest that Mn2+ coordinates more strongly to PF6- than to TFSI-, while the opposite is true for Ni2+. This work provides a framework to experimentally determine the coordination spheres of paramagnetic metals in battery electrolyte solutions.

2.
ACS Appl Mater Interfaces ; 16(25): 32209-32219, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38863333

RESUMEN

Solid-state polymer electrolytes (SPEs), such as poly(ethylene oxide) (PEO), have good flexibility when compared to ceramic-type solid electrolytes. Therefore, it could be an ideal solid electrolyte for zero-excess all-solid-state Li metal battery (ZESSLB), also known as anode-free all-solid-state Li battery, development by offering better contact to the Cu current collector. However, the low Coulombic efficiencies observed from polymer type solid-state Li batteries (SSLBs) raise the concern that PEO may consume the limited amount of Li in ZESSLB to fail the system. Here, we designed ZESSLBs by using all-ceramic half-cells and an extra PEO electrolyte interlayer to study the reactivity between PEO and freshly deposited Li under a real battery operating conduction. By shuttling active Li back from the anode to the cathode, the PEO SPEs can be separated from the ZESSLBs for experimental studies without the influence from cathode materials or possible contamination from the usage of Li foil as the anode. Electrochemical cycling of ZESSLBs shows that the capacities of ZESSLBs with solvent-free and solvent-casted PEO SPEs significantly degraded compared to the ones with Li metal as the anode for the all-solid-state Li batteries. The fast capacity degradation of ZESSLBs using different types of PEO SPEs is evidenced to be associated with Li reacting with PEO, residual solvent, and water in PEO and dead Li formation upon the presence or absence of residual solvent. The results suggest that avoiding direct contact between the PEO electrolyte and deposited lithium is necessary when there is only a limited amount of Li available in ZESSLBs.

3.
Phys Chem Chem Phys ; 25(18): 12767-12776, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37128728

RESUMEN

The addition of conductive additives during electrode fabrication is standard practice to mitigate a low intrinsic electronic conductivity of most cathode materials used in Li-ion batteries. To ensure an optimal conduction pathway, these conductive additives, which generally consist of carbon particles, need to be in good contact with the active compounds. Herein, we demonstrate how a combination of pulsed electron paramagnetic resonance (EPR) relaxometry and inverse Laplace transform (ILT) can be used to study such contact. The investigated system consists of PTMA (poly(2,2,6,6-tetramethylpiperidinyloxy-4-ylmethacrylate)) monomer radicals, which is a commonly used redox unit in organic radical batteries (ORB), mixed at different ratios with Super P carbon black (CB) as the conductive additive. Inversion recovery data were acquired to determine longitudinal (T1) relaxation time constant distributions. It was observed that not only the position and relative amplitude, but also the number of relaxation modes varies as the composition of PTMA monomer and CB is changed, thereby justifying the use of ILT instead of fitting with a predetermined number of components. A hypothesis for the origin of different relaxation modes was devised. It suggests that the electrode composition may locally affect the quality of electronic contact between the active material and carbon black.

4.
RSC Adv ; 13(21): 14565-14574, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37188254

RESUMEN

The identification of fundamental relationships between atomic configuration and electronic structure typically requires experimental empiricism or systematic theoretical studies. Here, we provide an alternative statistical approach to gauge the importance of structure parameters, i.e., bond lengths, bond angles, and dihedral angles, for hyperfine coupling constants in organic radicals. Hyperfine coupling constants describe electron-nuclear interactions defined by the electronic structure and are experimentally measurable, for example, by electron paramagnetic resonance spectroscopy. Importance quantifiers are computed with the machine learning algorithm neighborhood components analysis using molecular dynamics trajectory snapshots. Atomic-electronic structure relationships are visualized in matrices correlating structure parameters with coupling constants of all magnetic nuclei. Qualitatively, the results reproduce common hyperfine coupling models. Tools to use the presented procedure for other radicals/paramagnetic species or other atomic structure-dependent parameters are provided.

5.
J Am Chem Soc ; 144(36): 16350-16365, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36040461

RESUMEN

All-solid-state batteries based on non-combustible solid electrolytes are promising candidates for safe energy storage systems. In addition, they offer the opportunity to utilize metallic lithium as an anode. However, it has proven to be a challenge to design an electrolyte that combines high ionic conductivity and processability with thermodynamic stability toward lithium. Herein, we report a new highly conducting solid solution that offers a route to overcome these challenges. The Li-P-S ternary was first explored via a combination of high-throughput crystal structure predictions and solid-state synthesis (via ball milling) of the most promising compositions, specifically, phases within the Li3P-Li2S tie line. We systematically characterized the structural properties and Li-ion mobility of the resulting materials by X-ray and neutron diffraction, solid-state nuclear magnetic resonance spectroscopy (relaxometry), and electrochemical impedance spectroscopy. A Li3P-Li2S metastable solid solution was identified, with the phases adopting the fluorite (Li2S) structure with P substituting for S and the extra Li+ ions occupying the octahedral voids and contributing to the ionic transport. The analysis of the experimental data is supported by extensive quantum-chemical calculations of both structural stability, diffusivity, and activation barriers for Li+ transport. The new solid electrolytes show Li-ion conductivities in the range of established materials, while their composition guarantees thermodynamic stability toward lithium metal anodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA