Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Clin Genet ; 106(1): 114-115, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38715525

RESUMEN

FGF12 related epilepsy presents with variable phenotypes. We report another patient with a duplication involving the FGF12 gene who presented similar to other published cases having normal early development and responded to phenytoin.


Asunto(s)
Variaciones en el Número de Copia de ADN , Epilepsia , Factores de Crecimiento de Fibroblastos , Humanos , Variaciones en el Número de Copia de ADN/genética , Factores de Crecimiento de Fibroblastos/genética , Epilepsia/genética , Masculino , Femenino , Fenotipo
2.
Genet Med ; 26(1): 100991, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37791544

RESUMEN

PURPOSE: We conducted qualitative interviews with patients with cancer and providers to identify gaps in clinical care and highlight care delivery solutions for the return of secondary germline findings. METHODS: Twelve patients and 19 cancer providers from the United States were interviewed between January 2019 and May 2021. Interviews elicited feedback about patient information needs, emotional responses to secondary findings, and recommendations for improving pre-test education. RESULTS: Patients' responses ranged from gratitude to regret, depending on how much pre-test counseling they received before tumor testing. Providers cited insufficient clinic time as a major barrier to pretest education, favoring online support tools and standardized pre-test education models. Providers had differing perspectives on how pre-test education should be integrated into clinical workflows but agreed that it should include the differences between somatic and germline testing, the likelihood of medically actionable findings, and the possibility of being referred to a genetics provider. CONCLUSION: The spectrum of participants' responses to their secondary findings underscores the importance of adequate pre-test discussions before somatic sequencing. Although educational interventions could address patients' information needs and augment traditional pre-test counseling, health care systems, labs, and genetic providers may be called on to play greater roles in pre-test education.


Asunto(s)
Neoplasias , Humanos , Estados Unidos , Neoplasias/genética , Neoplasias/terapia , Atención a la Salud
3.
Gynecol Oncol Rep ; 50: 101294, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37876879

RESUMEN

•SMARCB1/INI1-deficient gynecologic tumors are rare and clinically aggressive. A subset shows primitive yolk sac tumor features.•Due to technical limitation of next generation sequencing (NGS) and interlaboratory variability in sequencing methodologies and analytical pipelines, SMARCB1 deficiency caused by somatic copy number variations (SCNV) may be underreported by NGS.•To improve identification of SMARCB1/INI1-deficient neoplasm, we propose the following strategy: First, careful pathology slide review and detection of rhabdoid cells should raise the possibility of SMARCB1/INI1 deficiency. Second, INI1 IHC is a useful complementary test to exclude clinical suspicion of SMARCB1 deficiency in the context of negative molecular reporting. Third, knowledge of potential underreporting of SMARCB1 mutation would avoid underdiagnosis.

4.
Arch Pathol Lab Med ; 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37852169

RESUMEN

CONTEXT.­: Next-generation sequencing (NGS)-based assays are used for diagnosis of diverse inherited disorders. Limited data are available pertaining to interlaboratory analytical performance of these assays. OBJECTIVE.­: To report on the College of American Pathologists (CAP) NGS Germline Program, which is methods based, and explore the evolution in laboratory testing practices. DESIGN.­: Results from the NGS Germline Program from 2016-2020 were analyzed for interlaboratory analytical performance. Self-reported laboratory testing practices were also evaluated. RESULTS.­: From 2016-2020, a total of 297 laboratories participated in at least 1 program mailing. Of the 289 laboratories that provided information on tests offered, 138 (47.8%) offered only panel testing throughout their enrollment, while 35 (12.1%) offered panels and exome testing, 30 (10.4%) offered only exomes, 9 (3.1%) offered only genomes, and 15 (5.2%) offered panels, exomes, and genomes. The remainder (62 laboratories, 21.4%) changed their test offerings during the 2016-2020 timeframe. Considering each genomic position/interval, the median detection percentage at variant positions across the 2016-2020 mailings ranged from 94.3% to 100%, while at reference positions (no variant detected), the median correct response percentage was 100% across all mailings. When considering performance of individual laboratories, 89.5% (136 of 152) to 98.0% (149 of 152) of laboratories successfully met the detection threshold (≥90% of the variants present), while 94.6% (87 of 92) to 100% (163 of 163) of laboratories met the 95% specificity threshold across mailings. CONCLUSIONS.­: Since the inception of this program, laboratories have consistently performed well. The median sensitivity and specificity of detection of sequence variants included in this program (eg, single nucleotide variants, insertions, and deletions) were 100.0%.

5.
Cells ; 12(10)2023 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-37408271

RESUMEN

Mutations of the X-linked gene encoding methyl-CpG-binding protein 2 (MECP2) cause classical forms of Rett syndrome (RTT) in girls. A subset of patients who are recognized to have an overlapping neurological phenotype with RTT but are lacking a mutation in a gene that causes classical or atypical RTT can be described as having a 'Rett-syndrome-like phenotype (RTT-L). Here, we report eight patients from our cohort diagnosed as having RTT-L who carry mutations in genes unrelated to RTT. We annotated the list of genes associated with RTT-L from our patient cohort, considered them in the light of peer-reviewed articles on the genetics of RTT-L, and constructed an integrated protein-protein interaction network (PPIN) consisting of 2871 interactions connecting 2192 neighboring proteins among RTT- and RTT-L-associated genes. Functional enrichment analysis of RTT and RTT-L genes identified a number of intuitive biological processes. We also identified transcription factors (TFs) whose binding sites are common across the set of RTT and RTT-L genes and appear as important regulatory motifs for them. Investigation of the most significant over-represented pathway analysis suggests that HDAC1 and CHD4 likely play a central role in the interactome between RTT and RTT-L genes.


Asunto(s)
Trastornos del Neurodesarrollo , Síndrome de Rett , Humanos , Síndrome de Rett/genética , Proteína 2 de Unión a Metil-CpG/genética , Mutación/genética , Fenotipo , Factores de Transcripción/genética
6.
J Clin Med ; 11(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35743482

RESUMEN

We describe a patient with both gastric adenocarcinoma and metastatic squamous cell carcinoma (SCC) of unknown primary site. The possibility of a single malignant clonal process as opposed to differing primaries was supported by the finding of both histologies exhibiting high microsatellite instability. Despite evidence of tumor microsatellite instability, the patient's disease process did not respond to immune checkpoint inhibition. Our pursuit of whole-exome sequencing and comparing the single-nucleotide variant profiles of both tumors supported a single clonal process with the development of significant intratumoral heterogeneity. High intratumoral heterogeneity has posed a challenge to precision medicine approaches, but we also provide a review of the literature of this phenomenon mediating resistance to immunotherapy strategies.

7.
JCO Precis Oncol ; 6: e2100451, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35544730

RESUMEN

PURPOSE: Profiling of pediatric cancers through deep sequencing of large gene panels and whole exomes is rapidly being adopted in many clinical settings. However, the most impactful approach to genomic profiling of pediatric cancers remains to be defined. METHODS: We conducted a prospective precision medicine trial, using whole-exome sequencing of tumor and germline tissue and whole-transcriptome sequencing (RNA Seq) of tumor tissue to characterize the mutational landscape of 127 tumors from 126 unique patients across the spectrum of pediatric brain tumors, hematologic malignancies, and extracranial solid tumors. RESULTS: We identified somatic tumor alterations in 121/127 (95.3%) tumor samples and identified cancer predisposition syndromes on the basis of known pathogenic or likely pathogenic germline mutations in cancer predisposition genes in 9/126 patients (7.1%). Additionally, we developed a novel scoring system for measuring the impact of tumor and germline sequencing, encompassing therapeutically relevant genomic alterations, cancer-related germline findings, recommendations for treatment, and refinement of risk stratification or prognosis. At least one impactful finding from the genomic results was identified in 108/127 (85%) samples sequenced. A recommendation to consider a targeted agent was provided for 82/126 (65.1%) patients. Twenty patients ultimately received therapy with a molecularly targeted agent, representing 24% of those who received a targeted agent recommendation and 16% of the total cohort. CONCLUSION: Paired tumor/normal whole-exome sequencing and tumor RNA Seq of de novo or relapsed/refractory tumors was feasible and clinically impactful in high-risk pediatric cancer patients.


Asunto(s)
Antineoplásicos , Neoplasias , Niño , Genómica/métodos , Mutación de Línea Germinal/genética , Humanos , Neoplasias/tratamiento farmacológico , Estudios Prospectivos , Secuenciación del Exoma
9.
Arch Pathol Lab Med ; 146(4): 451-461, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34424952

RESUMEN

CONTEXT.­: Next-generation sequencing-based assays are increasingly used in clinical molecular laboratories to detect somatic variants in solid tumors and hematologic malignancies and to detect constitutional variants. Proficiency testing data are potential sources of information about challenges in performing these assays. OBJECTIVE.­: To examine the most common sources of unacceptable results from the College of American Pathologists Next-Generation Sequencing Bioinformatics, Hematological Malignancies, Solid Tumor, and Germline surveys and provide recommendations on how to avoid these pitfalls and improve performance. DESIGN.­: The College of American Pathologists next-generation sequencing somatic and germline proficiency testing survey results from 2016 to 2019 were analyzed to identify the most common causes of unacceptable results. RESULTS.­: On somatic and germline proficiency testing surveys, 95.9% (18 815/19 623) and 97.8% (33 890/34 641) of all variants were correctly identified, respectively. The most common causes of unacceptable results related to sequencing were false-negative errors in genomic regions that were difficult to sequence because of high GC content. False-positive errors occurred in the context of homopolymers and pseudogenes. Recurrent errors in variant annotation were seen for dinucleotide and duplication variants and included unacceptable transcript selection and outdated variant nomenclature. A small percentage of preanalytic or postanalytic errors were attributed to specimen swaps and transcription errors. CONCLUSIONS.­: Laboratories demonstrate overall excellent performance for detecting variants in both somatic and germline proficiency testing surveys. Proficiency testing survey results highlight infrequent, but recurrent, analytic and nonanalytic challenges in performing next- generation sequencing-based assays and point to remedies to help laboratories improve performance.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Bioensayo , Células Germinativas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Laboratorios , Ensayos de Aptitud de Laboratorios/métodos , Neoplasias/genética
10.
Cancer Res ; 81(23): 5818-5832, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34610968

RESUMEN

Children with treatment-refractory or relapsed (R/R) tumors face poor prognoses. As the genomic underpinnings driving R/R disease are not well defined, we describe here the genomic and transcriptomic landscapes of R/R solid tumors from 202 patients enrolled in Beat Childhood Cancer Consortium clinical trials. Tumor mutational burden (TMB) was elevated relative to untreated tumors at diagnosis, with one-third of tumors classified as having a pediatric high TMB. Prior chemotherapy exposure influenced the mutational landscape of these R/R tumors, with more than 40% of tumors demonstrating mutational signatures associated with platinum or temozolomide chemotherapy and two tumors showing treatment-associated hypermutation. Immunogenomic profiling found a heterogenous pattern of neoantigen and MHC class I expression and a general absence of immune infiltration. Transcriptional analysis and functional gene set enrichment analysis identified cross-pathology clusters associated with development, immune signaling, and cellular signaling pathways. While the landscapes of these R/R tumors reflected those of their corresponding untreated tumors at diagnosis, important exceptions were observed, suggestive of tumor evolution, treatment resistance mechanisms, and mutagenic etiologies of treatment. SIGNIFICANCE: Tumor heterogeneity, chemotherapy exposure, and tumor evolution contribute to the molecular profiles and increased mutational burden that occur in treatment-refractory and relapsed childhood solid tumors.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/genética , Resistencia a Antineoplásicos , Evasión Inmune , Mutación , Recurrencia Local de Neoplasia/patología , Neoplasias/patología , Adolescente , Adulto , Niño , Preescolar , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Humanos , Lactante , Estudios Longitudinales , Masculino , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/inmunología , Pronóstico , Tasa de Supervivencia , Transcriptoma , Adulto Joven
11.
Oncotarget ; 12(8): 726-739, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33889297

RESUMEN

We developed and analytically validated a comprehensive genomic profiling (CGP) assay, GEM ExTra, for patients with advanced solid tumors that uses Next Generation Sequencing (NGS) to characterize whole exomes employing a paired tumor-normal subtraction methodology. The assay detects single nucleotide variants (SNV), indels, focal copy number alterations (CNA), TERT promoter region, as well as tumor mutation burden (TMB) and microsatellite instability (MSI) status. Additionally, the assay incorporates whole transcriptome sequencing of the tumor sample that allows for the detection of gene fusions and select special transcripts, including AR-V7, EGFR vIII, EGFRvIV, and MET exon 14 skipping events. The assay has a mean target coverage of 180X for the normal (germline) and 400X for tumor DNA including enhanced probe design to facilitate the sequencing of difficult regions. Proprietary bioinformatics, paired with comprehensive clinical curation results in reporting that defines clinically actionable, FDA-approved, and clinical trial drug options for the management of the patient's cancer. GEM ExTra demonstrated analytic specificity (PPV) of > 99.9% and analytic sensitivity of 98.8%. Application of GEM ExTra to 1,435 patient samples revealed clinically actionable alterations in 83.9% of reports, including 31 (2.5%) where therapeutic recommendations were based on RNA fusion findings only.

12.
Transl Psychiatry ; 10(1): 407, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33235206

RESUMEN

Previously, we reported a family in which bipolar disorder (BD) co-segregates with a Mendelian kidney disorder linked to 1q22. The causative renal gene was later identified as MUC1. Genome-wide linkage analysis of BD in the family yielded a peak at 1q22 that encompassed the NTRK1 and MUC1 genes. NTRK1 codes for TrkA (Tropomyosin-related kinase A) which is essential for development of the cholinergic nervous system. Whole genome sequencing of the proband identified a damaging missense mutation, E492K, in NTRK1. Induced pluripotent stem cells were generated from family members, and then differentiated to neural stem cells (NSCs). E492K NSCs had reduced neurite outgrowth. A conditional knock-in mouse line, harboring the point mutation in the brain, showed depression-like behavior in the tail suspension test following challenge by physostigmine, a cholinesterase inhibitor. These results are consistent with the cholinergic hypothesis of depression. They imply that the NTRK1 E492K mutation, impairs cholinergic neurotransmission, and may convey susceptibility to bipolar disorder.


Asunto(s)
Trastorno Bipolar , Enfermedades Renales , Receptor trkA , Animales , Trastorno Bipolar/genética , Depresión , Ratones , Mutación , Receptor trkA/genética
13.
Neurol Genet ; 6(4): e468, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32754643

RESUMEN

OBJECTIVE: Description of a new variant of the glutamine-fructose-6-phosphate transaminase 1 (GFPT1) gene causing congenital myasthenic syndrome (CMS) in 3 children from 2 unrelated families. METHODS: Muscle biopsies, EMG, and whole-exome sequencing were performed. RESULTS: All 3 patients presented with congenital hypotonia, muscle weakness, respiratory insufficiency, head lag, areflexia, and gastrointestinal dysfunction. Genetic analysis identified a homozygous frameshift insertion in the GFPT1 gene (NM_001244710.1: c.686dupC; p.Arg230Ter) that was shared by all 3 patients. In one of the patients, inheritance of the variant was through uniparental disomy (UPD) with maternal origin. Repetitive nerve stimulation and single-fiber EMG was consistent with the clinical diagnosis of CMS with a postjunctional defect. Ultrastructural evaluation of the muscle biopsy from one of the patients showed extremely attenuated postsynaptic folds at neuromuscular junctions and extensive autophagic vacuolar pathology. CONCLUSIONS: These results expand on the spectrum of known loss-of-function GFPT1 mutations in CMS12 and in one family demonstrate a novel mode of inheritance due to UPD.

14.
Hum Mutat ; 41(2): 412-419, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31660686

RESUMEN

We report a likely pathogenic splice-altering AP4S1 intronic variant in two sisters with progressive spastic paraplegia, global developmental delay, shy character, and foot deformities. Sequencing was completed on whole-blood messenger RNA (mRNA) and analyzed for gene expression outliers after exome sequencing analysis failed to identify a causative variant. AP4S1 was identified as an outlier and contained a rare homozygous variant located three bases upstream of exon 5 (NC_000014.8(NM_007077.4):c.295-3C>A). Confirmed by additional RNA-seq, reverse-transcription polymerase chain reaction, and Sanger sequencing, this variant corresponded with exon 5, including skipping, altered isoform usage, and loss of expression from the canonical isoform 2 (NM_001128126.3). Previously, loss-of-function variants within AP4S1 were associated with a quadriplegic cerebral palsy-6 phenotype, AP-4 Deficiency Syndrome. In this study, the inclusion of mRNA-seq allowed for the identification of a previously missed splice-altering variant, and thereby expands the mutational spectrum of AP-4 Deficiency Syndrome to include impacts to some tissue-dependent isoforms.


Asunto(s)
Complejo 4 de Proteína Adaptadora/genética , Empalme Alternativo , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Intrones , Hermanos , Paraplejía Espástica Hereditaria/diagnóstico , Paraplejía Espástica Hereditaria/genética , Alelos , Femenino , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Linaje , Fenotipo
15.
Hum Genet ; 138(11-12): 1409-1417, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31748968

RESUMEN

Pelizaeus-Merzbacher-like disease (PMLD) is an autosomal recessive hypomyelinating leukodystrophy, which is clinically and radiologically similar to X-linked Pelizaeus-Merzbacher disease (PMD). PMLD is characterized by early-onset nystagmus, delayed development (motor delay, speech delay and dysarthria), dystonia, hypotonia typically evolving into spasticity, ataxia, seizures, optic atrophy, and diffuse leukodystrophy on magnetic resonance imaging (MRI). We identified a 12-year-old Caucasian/Hispanic male with the classical clinical characteristics of PMLD with lack of myelination of the subcortical white matter, and absence of the splenium of corpus callosum. Exome sequencing in the trio revealed novel compound heterozygous pathogenic mutations in SNAP29 (p.Leu119AlafsX15, c.354DupG and p.0?, c.2T > C). Quantitative analysis of the patient's blood cells through RNA sequencing identified a significant decrease in SNAP29 mRNA expression, while western blot analysis on fibroblast cells revealed a lack of protein expression compared to parental and control cells. Mutations in SNAP29 have previously been associated with cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma (CEDNIK) syndrome. Typical skin features described in CEDNIK syndrome, such as generalized ichthyosis and keratoderma, were absent in our patient. Moreover, the early onset nystagmus and leukodystrophy were consistent with a PMLD diagnosis. These findings suggest that loss of SNAP29 function, which was previously associated with CEDNIK syndrome, is also associated with PMLD. Overall, our study expands the genetic spectrum of PMLD.


Asunto(s)
Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Heterocigoto , Mutación , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Niño , Humanos , Masculino , Pronóstico , Secuenciación del Exoma
16.
Am J Hum Genet ; 105(3): 509-525, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31422817

RESUMEN

The human RNA helicase DDX6 is an essential component of membrane-less organelles called processing bodies (PBs). PBs are involved in mRNA metabolic processes including translational repression via coordinated storage of mRNAs. Previous studies in human cell lines have implicated altered DDX6 in molecular and cellular dysfunction, but clinical consequences and pathogenesis in humans have yet to be described. Here, we report the identification of five rare de novo missense variants in DDX6 in probands presenting with intellectual disability, developmental delay, and similar dysmorphic features including telecanthus, epicanthus, arched eyebrows, and low-set ears. All five missense variants (p.His372Arg, p.Arg373Gln, p.Cys390Arg, p.Thr391Ile, and p.Thr391Pro) are located in two conserved motifs of the RecA-2 domain of DDX6 involved in RNA binding, helicase activity, and protein-partner binding. We use functional studies to demonstrate that the first variants identified (p.Arg373Gln and p.Cys390Arg) cause significant defects in PB assembly in primary fibroblast and model human cell lines. These variants' interactions with several protein partners were also disrupted in immunoprecipitation assays. Further investigation via complementation assays included the additional variants p.Thr391Ile and p.Thr391Pro, both of which, similarly to p.Arg373Gln and p.Cys390Arg, demonstrated significant defects in P-body assembly. Complementing these molecular findings, modeling of the variants on solved protein structures showed distinct spatial clustering near known protein binding regions. Collectively, our clinical and molecular data describe a neurodevelopmental syndrome associated with pathogenic missense variants in DDX6. Additionally, we suggest DDX6 join the DExD/H-box genes DDX3X and DHX30 in an emerging class of neurodevelopmental disorders involving RNA helicases.


Asunto(s)
ARN Helicasas DEAD-box/genética , Discapacidad Intelectual/genética , Mutación Missense , Proteínas Proto-Oncogénicas/genética , ARN/genética , Humanos
18.
Eur Neuropsychopharmacol ; 29(1): 156-170, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30503783

RESUMEN

Genome-wide association studies of case-control status have advanced the understanding of the genetic basis of psychiatric disorders. Further progress may be gained by increasing sample size but also by new analysis strategies that advance the exploitation of existing data, especially for clinically important quantitative phenotypes. The functionally-informed efficient region-based test strategy (FIERS) introduced herein uses prior knowledge on biological function and dependence of genotypes within a powerful statistical framework with improved sensitivity and specificity for detecting consistent genetic effects across studies. As proof of concept, FIERS was used for the first genome-wide single nucleotide polymorphism (SNP)-based investigation on bipolar disorder (BD) that focuses on an important aspect of disease course, the functional outcome. FIERS identified a significantly associated locus on chromosome 15 (hg38: chr15:48965004 - 49464789 bp) with consistent effect strength between two independent studies (GAIN/TGen: European Americans, BOMA: Germans; n = 1592 BD patients in total). Protective and risk haplotypes were found on the most strongly associated SNPs. They contain a CTCF binding site (rs586758); CTCF sites are known to regulate sets of genes within a chromatin domain. The rs586758 - rs2086256 - rs1904317 haplotype is located in the promoter flanking region of the COPS2 gene, close to microRNA4716, and the EID1, SHC4, DTWD1 genes as plausible biological candidates. While implication with BD is novel, COPS2, EID1, and SHC4 are known to be relevant for neuronal differentiation and function and DTWD1 for psychopharmacological side effects. The test strategy FIERS that enabled this discovery is equally applicable for tag SNPs and sequence data.


Asunto(s)
Trastorno Bipolar/diagnóstico , Trastorno Bipolar/genética , Predisposición Genética a la Enfermedad/genética , Adolescente , Adulto , Anciano , Trastorno Bipolar/fisiopatología , Trastorno Bipolar/psicología , Estudios de Casos y Controles , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Haplotipos , Humanos , Desequilibrio de Ligamiento/genética , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Polimorfismo de Nucleótido Simple/genética , Pronóstico , Escalas de Valoración Psiquiátrica , Población Blanca/genética , Adulto Joven
19.
Int J Bipolar Disord ; 6(1): 24, 2018 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-30415424

RESUMEN

BACKGROUND: Disentangling the etiology of common, complex diseases is a major challenge in genetic research. For bipolar disorder (BD), several genome-wide association studies (GWAS) have been performed. Similar to other complex disorders, major breakthroughs in explaining the high heritability of BD through GWAS have remained elusive. To overcome this dilemma, genetic research into BD, has embraced a variety of strategies such as the formation of large consortia to increase sample size and sequencing approaches. Here we advocate a complementary approach making use of already existing GWAS data: a novel data mining procedure to identify yet undetected genotype-phenotype relationships. We adapted association rule mining, a data mining technique traditionally used in retail market research, to identify frequent and characteristic genotype patterns showing strong associations to phenotype clusters. We applied this strategy to three independent GWAS datasets from 2835 phenotypically characterized patients with BD. In a discovery step, 20,882 candidate association rules were extracted. RESULTS: Two of these rules-one associated with eating disorder and the other with anxiety-remained significant in an independent dataset after robust correction for multiple testing. Both showed considerable effect sizes (odds ratio ~ 3.4 and 3.0, respectively) and support previously reported molecular biological findings. CONCLUSION: Our approach detected novel specific genotype-phenotype relationships in BD that were missed by standard analyses like GWAS. While we developed and applied our method within the context of BD gene discovery, it may facilitate identifying highly specific genotype-phenotype relationships in subsets of genome-wide data sets of other complex phenotype with similar epidemiological properties and challenges to gene discovery efforts.

20.
Am J Med Genet A ; 176(7): 1549-1558, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30160831

RESUMEN

Chromosome 1q41-q42 deletions have recently been associated with a recognizable neurodevelopmental syndrome of early childhood (OMIM 612530). Within this group, a predominant phenotype of developmental delay (DD), intellectual disability (ID), epilepsy, distinct dysmorphology, and brain anomalies on magnetic resonance imaging/computed tomography has emerged. Previous reports of patients with de novo deletions at 1q41-q42 have led to the identification of an evolving smallest region of overlap which has included several potentially causal genes including DISP1, TP53BP2, and FBXO28. In a recent report, a cohort of patients with de novo mutations in WDR26 was described that shared many of the clinical features originally described in the 1q41-q42 microdeletion syndrome (MDS). Here, we describe a novel germline FBXO28 frameshift mutation in a 3-year-old girl with intractable epilepsy, ID, DD, and other features which overlap those of the 1q41-q42 MDS. Through a familial whole-exome sequencing study, we identified a de novo FBXO28 c.972_973delACinsG (p.Arg325GlufsX3) frameshift mutation in the proband. The frameshift and resulting premature nonsense mutation have not been reported in any genomic database. This child does not have a large 1q41-q42 deletion, nor does she harbor a WDR26 mutation. Our case joins a previously reported patient also in whom FBXO28 was affected but WDR26 was not. These findings support the idea that FBXO28 is a monogenic disease gene and contributes to the complex neurodevelopmental phenotype of the 1q41-q42 gene deletion syndrome.


Asunto(s)
Trastorno Dismórfico Corporal/genética , Deleción Cromosómica , Cromosomas Humanos Par 1/genética , Discapacidades del Desarrollo/genética , Epilepsia Refractaria/genética , Mutación del Sistema de Lectura , Proteínas Ligasas SKP Cullina F-box/genética , Trastorno Dismórfico Corporal/patología , Preescolar , Discapacidades del Desarrollo/patología , Epilepsia Refractaria/patología , Exoma , Femenino , Humanos , Fenotipo , Pronóstico , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...