Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(44): 41356-41362, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37970031

RESUMEN

Numerical optimization of silica-metal core-shell nanoresonator dimer geometries was realized to maximize the fluorescence of the NV and SiV diamond color centers. The configurations combine the advantages stemming from the elongation and reduced metal volume of hollow spheroids and the wide tunability and good antenna efficiency due to hybridization of composite modes on the core-shell dimers. The optimized coupled dimers sustain plasmonic modes that maximize the fluorescence by ensuring the simultaneous enhancement of excitation and emission. Asymmetry is advantageous in terms of good enhancement with a compromised corrected quantum efficiency. The directional fluorescence can be significantly increased in the optimized asymmetrically coupled dimer configurations.

2.
Phys Rev E ; 108(2-2): 025205, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37723798

RESUMEN

Recent validation experiments on laser irradiation of polymer foils with and without implanted golden nanoparticles are discussed. First we analyze characteristics of craters, formed in the target after its interaction with the laser beam. Preliminary experimental results show significant production of deuterons when both the energy of laser pulse and concentration of nanoparticles are high enough. We consider the deuteron production via the nuclear transmutation reactions p+C→d+X where protons are accelerated by the Coulomb field generated in the target plasma. We argue that maximal proton energy can be above threshold values for these reactions and the deuteron yield may noticeably increase due to presence of nanoparticles.

3.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36362358

RESUMEN

In this work, the effects of femtosecond laser irradiation and doping with plasmonic gold nanorods on the degree of conversion (DC) of a urethane dimethacrylate (UDMA)-triethylene glycol dimethacrylate (TEGDMA) nanocomposite were investigated. The UDMA-TEGDMA photopolymer was prepared in a 3:1 weight ratio and doped with dodecanethiol- (DDT) capped gold nanorods of 25 × 75 or 25 × 85 nm nominal diameter and length. It was found that the presence of the gold nanorods alone (without direct plasmonic excitation) can increase the DC of the photopolymer by 6-15%. This increase was found to be similar to what could be achieved with a control heat treatment of 30 min at 180 °C. It was also shown that femtosecond laser impulses (795 nm, 5 mJ pulse energy, 50 fs pulse length, 2.83 Jcm-2 fluence), applied after the photopolymerization under a standard dental curing lamp, can cause a 2-7% increase in the DC of undoped samples, even after thermal pre-treatment. The best DC values (12-15% increase) were obtained with combined nanorod doping and subsequent laser irradiation close to the plasmon resonance peak of the nanorods (760-800 nm), which proves that the excited plasmon field can directly facilitate double bond breakage (without thermoplasmonic effects due to the short pulse length) and increase the crosslink density independently from the initial photopolymerization process.


Asunto(s)
Nanocompuestos , Nanotubos , Oro , Rayos Láser
4.
Nanomaterials (Basel) ; 12(3)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35159696

RESUMEN

Superradiance was demonstrated in broken-symmetry arrays of SiV diamond color centers embedded into concave plasmonic nanoresonators. The coupled configurations, including the diamond-silver (bare) and diamond-silver-diamond (coated) nanoresonators' geometry parameters as well as the emitters' azimuthal orientation and distance from the metal, were numerically optimized. An objective function consisting of the total fluorescence enhancement multiplied by the corrected emission quantum efficiency was used to design nanoresonators that promote superradiance. A larger total fluorescence enhancement was achieved via a larger number of emitters in both geometries, in coated spherical and in bare ellipsoidal nanoresonators. The superradiance performance was better in the case of a smaller number of emitters in bare spherical and coated ellipsoidal nanoresonators and in the case of a larger number of emitters in coated spherical and bare ellipsoidal nanoresonators. Ellipsoidal geometry is advantageous independent of composition and seeding. The configurations optimal for non-cooperative fluorescence enhancement and superradiance are coincidental. A radiative rate enhancement proportional to the number of emitters was found in wide spectral regions; therefore, superradiance implies N-fold enhancements coexist at excitation and emission. In ellipsoidal nanoresonators, the better superradiance achieved via a smaller quality-factor is accompanied by larger frequency pulling.

5.
Nanomaterials (Basel) ; 11(5)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067886

RESUMEN

Plasmonic nanoresonators consisting of a gold nanorod and a spherical silica core and gold shell, both coated with a gain layer, were optimized to maximize the stimulated emission in the near-field (NF-c-type) and the outcoupling into the far-field (FF-c-type) and to enter into the spasing operation region (NF-c*-type). It was shown that in the case of a moderate dye concentration, the nanorod has more advantages: smaller lasing threshold and larger slope efficiency and larger achieved intensities in the near-field in addition to FF-c-type systems' smaller gain and outflow threshold, earlier dip-to-peak switching in the spectrum and slightly larger far-field outcoupling efficiency. However, the near-field (far-field) bandwidth is smaller for NF-c-type (FF-c-type) core-shell nanoresonators. In the case of a larger dye concentration (NF-c*-type), although the slope efficiency and near-field intensity remain larger for the nanorod, the core-shell nanoresonator is more advantageous, considering the smaller lasing, outflow, absorption and extinction cross-section thresholds and near-field bandwidth as well as the significantly larger internal and external quantum efficiencies. It was also shown that the strong-coupling of time-competing plasmonic modes accompanies the transition from lasing to spasing occurring, when the extinction cross-section crosses zero. As a result of the most efficient enhancement in the forward direction, the most uniform far-field distribution was achieved.

6.
Sci Rep ; 10(1): 12986, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32737359

RESUMEN

The generation of few-cycle laser pulses proved to be a key enabling technology in strong-field physics and ultrafast science. The question naturally arises whether one can induce few-cycle localized plasmon oscillations in optical near-fields. Here, we perform a comparative study of different plasmonic nanoresonators illuminated by few-cycle pulses. We analyze the number of cycles (NOC) of the plasmonic field, the near-field enhancement (NFE) as well as the figure of merit NFE/NOC. The pulse length dependence of these quantities is also investigated. Throughout the inspected pulse-length interval silica-gold and silica-silver core-shell monomers have the potential to preserve the NOC of the incoming pulse, silver bow-ties result in the highest NFE, whereas gold core-shell dimers have the highest NFE/NOC. Based on the analysis, silver bow-ties, gold core-shell and silver nanorod dimers proved to be the most suitable for few-cycle near-field amplification.

7.
Opt Express ; 27(22): 31176-31192, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31684358

RESUMEN

Superradiantly enhanced emission of SiV diamond color centers was achieved via numerically optimized concave plasmonic nanoresonators. Advantages of different numbers of SiV color centers, diamond-silver (bare) and diamond-silver-diamond (coated) core-shell nanoresonator types, spherical and ellipsoidal geometries were compared. Indistinguishable superradiance is reached via four color centers, which is accompanied by line-width narrowing except in a coated ellipsoidal nanoresonator that outperforms its bare counterpart in superradiance. Seeding of both spherical and bare ellipsoidal nano-resonators with six color centers results in larger fluorescence enhancement and better overridden superradiance thresholds simultaneously. Both phenomena are the best optimized in a six color centers seeded ellipsoidal bare nanoresonator according to the pronounced bad-cavity characteristics.

8.
Sci Rep ; 7(1): 13845, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-29062011

RESUMEN

Configuration of three different concave silver core-shell nanoresonators was numerically optimized to enhance the excitation and emission of embedded silicon vacancy (SiV) diamond color centers simultaneously. Conditional optimization was performed to ensure ~20-30-40 and 50% apparent quantum efficiency (cQE) of SiV color centers. The enhancement spectra, as well as the near-field and charge distribution were inspected to uncover the underlying nanophotonical phenomena. The conditionally optimized coupled systems were qualified by the product of the radiative rate enhancements at the excitation and emission, which is nominated as P x factor. The optimized spherical core-shell nanoresonator containing a centralized emitter is capable of enhancing the emission considerably via bonding dipolar resonance. The P x factor is 529-fold with 49.7% cQE at the emission. Decentralization of the emitter leads to appearance of higher order nonradiative multipolar modes. Transversal and longitudinal dipolar resonance of the optimized ellipsoidal core-shell resonator was tuned to the excitation and emission, which results in 6.2∙105 P x factor with 50.6% cQE at the emission. Rod-shaped concave core-shell nanoresonators exploit similar transversal and longitudinal dipolar resonance, moreover they enhance the fluorescence more significantly due to their antenna-like geometry. P x factor indicating 8.34∙105 enhancement is achievable while the cQE is 50.3% at the emission.

9.
Sensors (Basel) ; 15(2): 3513-39, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25654724

RESUMEN

Configurations capable of maximizing both the absorption component of system detection efficiency and the achievable polarization contrast were determined for 1550 nm polarized light illumination of different plasmonic structure integrated superconducting nanowire single-photon detectors (SNSPDs) consisting of p = 264 nm and P = 792 nm periodic niobium nitride (NbN) patterns on silica substrate. Global effective NbN absorptance maxima appear in case of p/s-polarized light illumination in S/P-orientation (γ = 90°/0° azimuthal angle) and the highest polarization contrast is attained in S-orientation of all devices. Common nanophotonical origin of absorptance enhancement is collective resonance on nanocavity gratings with different profiles, which is promoted by coupling between localized modes in quarter-wavelength metal-insulator-metal nanocavities and laterally synchronized Brewster-Zenneck-type surface waves in integrated SNSPDs possessing a three-quarter-wavelength-scaled periodicity. The spectral sensitivity and dispersion characteristics reveal that device design specific optimal configurations exist.


Asunto(s)
Absorciometría de Fotón , Nanotecnología , Fotometría , Conductividad Eléctrica , Diseño de Equipo , Nanocables/química , Niobio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...