Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JASA Express Lett ; 3(1): 011201, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36725531

RESUMEN

In spring/summer of 2018 and 2021, the Pacific Islands Fisheries Science Center Cetacean Research Program deployed drifting acoustic recorders in the U.S. Exclusive Economic Zones surrounding the Mariana Archipelago. Manual assessments revealed a low-frequency (median 473-554 Hz), short-duration (median 0.596 s), stereotypic tonal nocturnal call throughout the Mariana Archipelago. Based on time of year, spatiotemporal patterns, clear division among calls (i.e., no chorusing), comparisons with known vocalizations of whales, turtles, and fish, and presence of Bryde's whale calls, and because the call has not been detected elsewhere, we hypothesize this 500-Hz pulsed call is produced by Bryde's whales (Balaenoptera brydei).


Asunto(s)
Balaenoptera , Animales , Cetáceos , Factores de Tiempo , Acústica , Estaciones del Año
2.
Mov Ecol ; 11(1): 8, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750903

RESUMEN

BACKGROUND: Climate change is warming the Arctic faster than the rest of the planet. Shifts in whale migration timing have been linked to climate change in temperate and sub-Arctic regions, and evidence suggests Bering-Chukchi-Beaufort (BCB) bowhead whales (Balaena mysticetus) might be overwintering in the Canadian Beaufort Sea. METHODS: We used an 11-year timeseries (spanning 2009-2021) of BCB bowhead whale presence in the southern Chukchi Sea (inferred from passive acoustic monitoring) to explore relationships between migration timing and sea ice in the Chukchi and Bering Seas. RESULTS: Fall southward migration into the Bering Strait was delayed in years with less mean October Chukchi Sea ice area and earlier in years with greater sea ice area (p = 0.04, r2 = 0.40). Greater mean October-December Bering Sea ice area resulted in longer absences between whales migrating south in the fall and north in the spring (p < 0.01, r2 = 0.85). A stepwise shift after 2012-2013 shows some whales are remaining in southern Chukchi Sea rather than moving through the Bering Strait and into the northwestern Bering Sea for the winter. Spring northward migration into the southern Chukchi Sea was earlier in years with less mean January-March Chukchi Sea ice area and delayed in years with greater sea ice area (p < 0.01, r2 = 0.82). CONCLUSIONS: As sea ice continues to decline, northward spring-time migration could shift earlier or more bowhead whales may overwinter at summer feeding grounds. Changes to bowhead whale migration could increase the overlap with ships and impact Indigenous communities that rely on bowhead whales for nutritional and cultural subsistence.

3.
Ecol Appl ; 33(2): e2794, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36484787

RESUMEN

Fluctuations in prey abundance, composition, and distribution can impact predators, and when predators and fisheries target the same species, predators become essential to ecosystem-based management. Because of the difficulty in collecting concomitant predator-prey data at appropriate scales in patchy environments, few studies have identified strong linkages between cetaceans and prey, especially across large geographic areas. During summer 2018, a line-transect survey for cetaceans and coastal pelagic species was conducted over the continental shelf and slope of British Columbia, Canada, and the US West Coast, allowing for a large-scale investigation of predator-prey spatial relationships. We report on a case study of humpback whales (Megaptera novaeangliae) and their primary prey-Pacific herring (Clupea pallasii), northern anchovy (Engraulis mordax), and krill-using generalized additive models to explore the relationships between whale abundance on 10-km transect segments and prey metrics. Prey metrics included direct measures of biomass densities on segments and an original hotspot metric. For each prey species, segments in the upper fifth percentile for biomass density (across all segments) were designated hotspots, and whale counts on a segment were evaluated for their relationship to number of hotspot segments (species-specific and multispecies) within 25, 50, or 100 km. Whale abundance was not strongly related to direct measures of biomass densities, whereas models using hotspot metrics were more effective at describing variation in whale abundance, underscoring that evaluating prey at relevant and measurable scales is critical in patchy, dynamic marine environments. Our analysis highlighted differences in the distribution and prey availability for three humpback whale distinct population segments (DPSs) as defined under the US Endangered Species Act, including threatened and endangered DPSs that forage within the California Current Large Marine Ecosystem. These linkages provide insights into which prey species whales may be targeting in different regions and across multiple scales and, consequently, how climatic variability and anthropogenic risks may differentially impact these distinct predator-prey assemblages. By identifying scale-appropriate prey hotspots that co-occur with humpback whale aggregations, and with targeted, consistent prey sampling and estimations of potential consumption rates by whales, these findings can help inform the conservation and management of humpback whales within an ecosystem-based management framework.


Asunto(s)
Ecosistema , Yubarta , Animales , Estaciones del Año , Biomasa , Colombia Británica , Peces
4.
Sci Rep ; 10(1): 7710, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32382054

RESUMEN

Blue whales need to time their migration from their breeding grounds to their feeding grounds to avoid missing peak prey abundances, but the cues they use for this are unknown. We examine migration timing (inferred from the local onset and cessation of blue whale calls recorded on seafloor-mounted hydrophones), environmental conditions (e.g., sea surface temperature anomalies and chlorophyll a), and prey (spring krill biomass from annual net tow surveys) during a 10 year period (2008-2017) in waters of the Southern California Region where blue whales feed in the summer. Colder sea surface temperature anomalies the previous season were correlated with greater krill biomass the following year, and earlier arrival by blue whales. Our results demonstrate a plastic response of blue whales to interannual variability and the importance of krill as a driving force behind migration timing. A decadal-scale increase in temperature due to climate change has led to blue whales extending their overall time in Southern California. By the end of our 10-year study, whales were arriving at the feeding grounds more than one month earlier, while their departure date did not change. Conservation strategies will need to account for increased anthropogenic threats resulting from longer times at the feeding grounds.


Asunto(s)
Migración Animal/fisiología , Balaenoptera/fisiología , Conducta Alimentaria/fisiología , Océanos y Mares , Animales , Biomasa , California , Cambio Climático , Euphausiacea/fisiología , Humanos , Estaciones del Año , Temperatura
5.
R Soc Open Sci ; 5(8): 180241, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30225013

RESUMEN

Acoustic communication is an important aspect of reproductive, foraging and social behaviours for many marine species. Northeast Pacific blue whales (Balaenoptera musculus) produce three different call types-A, B and D calls. All may be produced as singular calls, but A and B calls also occur in phrases to form songs. To evaluate the behavioural context of singular call and phrase production in blue whales, the acoustic and dive profile data from tags deployed on individuals off southern California were assessed using generalized estimating equations. Only 22% of all deployments contained sounds attributed to the tagged animal. A larger proportion of tagged animals were female (47%) than male (13%), with 40% of unknown sex. Fifty per cent of tags deployed on males contained sounds attributed to the tagged whale, while only a few (5%) deployed on females did. Most calls were produced at shallow depths (less than 30 m). Repetitive phrasing (singing) and production of singular calls were most common during shallow, non-lunging dives, with the latter also common during surface behaviour. Higher sound production rates occurred during autumn than summer and they varied with time-of-day: singular call rates were higher at dawn and dusk, while phrase production rates were highest at dusk and night.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...