Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virus Genes ; 60(3): 275-286, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38594489

RESUMEN

LesaNPV (Leucoma salicis nucleopolyhedrovirus) is an alphabaculovirus group Ib. Potentially, it can be an eco-friendly agent to control the white satin moth Leucoma salicis population. In this study, we have established the relationship between LesaNPV and other closely related alphabaculoviruses. Environmental samples of late instar of white satin moth collected in Poland infected with baculovirus have been homogenized, polyhedra were purified and subjected to scanning and transmission electron microscopy. Viral DNA was sequenced using the Illumina platform and the whole-genome sequence was established by de novo assembly of paired reads. Genome annotation and phylogenetic analyses were performed with the use of bioinformatics tools. The genome of LesaNPV is 132 549 bp long with 154 ORFs and 54.9% GC content. Whole-genome sequencing revealed deletion of dUTPase as well as ribonucleoside reductases small and large subunits region in LesaNPV genome compared to Dasychira pudibunda nucleopolyhedrovirus (DapuNPV) and Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV) where this region is complete. Phylogenetic analysis of Baculoviridae family members showed that LesaNPV is less divergent from a common ancestor than closely related species DapuNPV and OpMNPV. This is interesting because their hosts do not occur in the same area. The baculoviruses described in this manuscript are probably isolates of one species and could be assigned to recently denominated species Alphabaculovirus orpseudotsugatae, historically originating from OpMNPV. This finding could have significant implications for the classification and understanding of the phylogeographical spread of baculoviruses.


Asunto(s)
Genoma Viral , Mariposas Nocturnas , Nucleopoliedrovirus , Filogenia , Nucleopoliedrovirus/genética , Nucleopoliedrovirus/clasificación , Nucleopoliedrovirus/aislamiento & purificación , Genoma Viral/genética , Animales , Mariposas Nocturnas/virología , Sistemas de Lectura Abierta , Secuenciación Completa del Genoma , ADN Viral/genética , Composición de Base
2.
J Vet Res ; 68(1): 9-17, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38525228

RESUMEN

Introduction: Since lagoviruses cannot be cultivated in vitro, using expression systems is an alternative and promising way of producing diagnostic viral antigens. It opens up their use as active immunogens for vaccine production. Material and Methods: Virus-like particles (VLPs) were produced in a baculovirus expression system in Spodoptera frugiperda 9 (Sf9) insect cells based on wild-type and mutated variants of the virus capsid VP60 protein from a Polish strain of European brown hare syndrome virus (EBHSV) and wild-type and mutated versions of this protein from a Polish strain of rabbit haemorrhagic disease virus 2 (RHDV2). The mutations were the substitution of an arginylglycylaspartic acid (Arg-Gly-Asp/RGD) motif in the P2 subdomain and, in the S or P2 domain, the substitution of three lysines. The VLPs were purified with sucrose gradient ultracentrifugation. Results: Protein production was confirmed by Western blot analysis using rabbit or hare sera and ELISA tests with different types of monoclonal antibody. The haemagglutination properties of some VLPs were also evaluated. Electron microscopy of wild-type EBHSV, wild-type RHDV2 and the four VP60 variants produced in this experiment revealed the formation of characteristic VLP structures. Conclusion: For the first time, mutated VLPs of RHDV2 with an RGD motif in the VP60 sequence were obtained, which could potentially be used to deliver cargo to eukaryotic cells. Virus-like particles based on the VP60 proteins of EBHSV and RHDV with a three-lysine substitution in the S or P2 domains were also obtained. Potential exists for VLPs of EBHSV and RHDV2 as vaccine candidates.

3.
Microbiol Spectr ; 11(3): e0256422, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37199661

RESUMEN

The emerging virus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2 virus), agent of COVID-19, appeared in December 2019 in Wuhan, China, and became a serious threat to global health and public safety. Many COVID-19 vaccines have been approved and licensed around the world. Most of the developed vaccines include S protein and induce an antibody-based immune response. Additionally, T-cell response to the SARS-CoV-2 antigens could be beneficial for combating the infection. The type of immune response is greatly dependent not only on the antigen, but also on adjuvants used in vaccine formulation. Here, we compared the effect of four different adjuvants (AddaS03, Alhydrogel/MPLA, Alhydrogel/ODN2395, Quil A) on the immunogenicity of a mixture of recombinant RBD and N SARS-CoV-2 proteins. We have analyzed the antibody and T-cell response specific to RBD and N proteins and assessed the impact of adjuvants on virus neutralization. Our results clearly indicated that Alhydrogel/MPLA and Alhydrogel/ODN2395 adjuvants elicited the higher titers of specific and cross-reactive antibodies to S protein variants from various SARS-CoV-2 and SARS-CoV-1 strains. Moreover, Alhydrogel/ODN2395 stimulated high cellular response to both antigens, as assessed by IFN-γ production. Importantly, sera collected from mice immunized with RBD/N cocktail in combination with these adjuvants exhibited neutralizing activity against the authentic SARS-CoV-2 virus as well as particles pseudotyped with S protein from various virus variants. The results from our study demonstrate the immunogenic potential of RBD and N antigens and point out the importance of adjuvants selection in vaccine formulation in order to enhance the immunological response. IMPORTANCE Although several COVID-19 vaccines have been approved worldwide, continuous emergence of new SARS-CoV-2 variants calls for new efficient vaccines against them, providing long-lasting immunity. As the immune response after vaccination is dependent not only on antigen used, but also on other vaccine components, e.g., adjuvants, the purpose of this work was to study the effect of different adjuvants on the immunogenicity of RBD/N SARS-CoV-2 cocktail proteins. In this work, it has been shown that immunization with both antigens plus the different adjuvants studied elicited higher Th1 and Th2 responses against RBD and N, which contributed to higher neutralization of the virus. The obtained results can be used for design of new vaccines, not only against SARS-CoV-2, but also against other important viral pathogens.


Asunto(s)
COVID-19 , Vacunas Virales , Animales , Ratones , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , COVID-19/prevención & control , Hidróxido de Aluminio , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Inmunogenicidad Vacunal
4.
Microbiol Spectr ; 11(1): e0288522, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36541807

RESUMEN

Zika virus (ZIKV) is a reemerging mosquito-borne flavivirus that causes febrile illness and is also linked to Guillain-Barré syndrome as well as to microcephaly in newborns. Due to the risk of fetuses developing microcephaly, ZIKV is a serious problem for pregnant women. Although different types of vaccine antigens have been investigated, there is still no approved vaccine that prevents ZIKV. The aim of this study was to produce a potential anti-Zika virus vaccine candidate based on virus-like particles (VLPs) in mammalian cells and to analyze the role of dosing regimen and adjuvant type on the immunogenicity of the obtained antigen. Novel recombinant VLPs (F2A) were designed by introducing the optimized signal sequence of prM protein and by adding a self-cleavage peptide 2A between proteins prM and E. These modifications improved the formation of the glycoprotein E dimer. It has been shown that the increasing dosing regimen generates a significantly higher titer of antibodies; however, the adjuvant type does not affect this process. Sera from mice immunized using an increasing dosing schedule also showed higher neutralization activity against both Zika strains (H/PAN/2016/BEI-259634, a pandemic strain belonging to Asian lineage, and MR766, a reference strain from African lineage). In summary, this is the first report showing the influence of vaccination schedules and adjuvants on the immunogenicity of ZIKV virus-like particles. IMPORTANCE Considering the transmission of ZIKV and the risk of another epidemic as well as the neurological complications that follow ZIKV infection, the virus remains a serious problem for the human population, especially pregnant women. Therefore, there is a great need to develop new effective vaccine candidates. Although different types of vaccine antigens have been used in preclinical studies worldwide, there is still no approved vaccine to prevent ZIKV. VLPs are among the most potent antigens, but to use VLPs, adjuvants must be added to the formulation and appropriate administration must be performed. In this study, we show for the first time the influence of vaccination schedules and adjuvants on the immunogenicity of recombinant ZIKV VLPs. The obtained results can be used in new vaccine designs not only against ZIKV but also against other important viral pathogens.


Asunto(s)
Microcefalia , Vacunas Virales , Infección por el Virus Zika , Virus Zika , Recién Nacido , Femenino , Humanos , Animales , Ratones , Embarazo , Virus Zika/genética , Infección por el Virus Zika/prevención & control , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Mamíferos
5.
Antiviral Res ; 209: 105511, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36581050

RESUMEN

Tick-borne encephalitis virus (TBEV) is a major cause of neurological infections in many regions of central, eastern and northern Europe and northern Asia. In approximately 15% of cases, TBEV infections lead to the development of severe encephalitis or meningitis. The main route of TBEV transmission is tick bites; however, ingestion of dairy products from infected animals (goats, cattle and sheep) is also a frequent cause of the disease. Therefore, vaccination of livestock in virus endemic regions could also contribute to the decrease in TBEV infection among humans. Although few vaccines against TBEV based on inactivated viruses are available for humans, due to high costs, vaccination is not mandatory in most of the affected countries. Moreover, there is still no vaccine for veterinary use. Here, we present a characterization and immunogenicity study of a new potential TBEV vaccine based on virus-like particles (VLPs) produced in Leishmania tarentolae cells. VLPs, which mimic native viral particles but do not contain genetic material, show good immunogenic potential. For the first time, we showed that the protozoan L. tarentolae expression system can be successfully used for the production of TBEV virus-like particles with highly efficient production. We confirmed that TBEV recombinant structural proteins (prM/M and E) from VLPs are highly recognized by neutralizing antibodies in in vitro analyses. Therefore, VLPs in combination with AddaVax adjuvant were used in immunization studies in a mouse model. VLPs proved to be highly immunogenic and induced the production of high levels of neutralizing antibodies. In a challenge experiment, immunization with VLPs provided full protection from lethal TBE in mice. Thus, we suggest that Leishmania-derived VLPs may be a good candidate for a safe alternative human vaccine with high efficiency of production. Moreover, this potential vaccine candidate may constitute a low-cost candidate for veterinary use.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Leishmania , Vacunas Virales , Humanos , Animales , Ratones , Ovinos , Bovinos , Anticuerpos Antivirales , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/prevención & control , Anticuerpos Neutralizantes
6.
Viruses ; 14(4)2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35458460

RESUMEN

(1) Background: Avian influenza viruses (AIVs) promptly evade preexisting immunity by constantly altering the immunodominant neutralizing antibody epitopes (antigenic drift) or by procuring new envelope serotypes (antigenic shift). As a consequence, the majority of antibodies elicited by infection or vaccination protect only against closely related strains. The immunodominance of the globular head of the main glycoprotein has been shown to mask the immunogenicity of the conserved regions located within the hemagglutinin (HA) protein. It has been shown that the broadly neutralizing universal antibodies recognize the HA2 domain in headless hemagglutinin (HA-stalk). Therefore, the HA-stalk is a highly conserved antigen, which makes it a good candidate to be used in universal vaccine development against AIVs. (2) Methods: Sf9 insect cells were used to produce triple H5N1/NA-HA-M1 influenza virus-like particles (VLPs) via co-expression of neuraminidase, hemagglutinin and matrix proteins from a tricistronic expression cassette. Purified influenza VLPs were used to immunize broiler hens. An in-depth characterization of the immune response was performed with an emphasis on the pool of elicited universal antibodies. (3) Results: Our findings suggest, that after vaccination with triple H5N1/NA-HA-M1 VLPs, hens generate a pool of broad-spectrum universal anti-HA-stalk antibodies. Furthermore, these universal antibodies are able to recognize the mammalian-derived HA-stalk recombinant proteins from homologous H5N1 and heterologous H7N9 AIVs as well as from the heterosubtypic human H1N1 influenza strain. (4) Conclusions: Our findings may suggest that highly pathogenic avian influenza H5 HA protein contain functional epitopes that are attractive targets for the generation of broad-spectrum antibodies against AIVs in their native hosts.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Aviar , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Anticuerpos Antivirales , Pollos , Epítopos , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Hemaglutininas , Humanos , Inmunidad , Gripe Aviar/prevención & control , Gripe Humana/prevención & control , Mamíferos , Ratones , Ratones Endogámicos BALB C , Vacunación/veterinaria
7.
Clin Microbiol Infect ; 28(3): 451.e1-451.e4, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34920116

RESUMEN

OBJECTIVES: This work aimed to analyse possible zoonotic spill-over of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We report the spill-over of mink-adapted SARS-CoV-2 from farmed mink to humans after adaptation that lasted at least 3 months. METHODS: Next-generation sequencing and a bioinformatic approach were applied to analyse the data. RESULTS: In an isolate obtained from an asymptomatic patient testing positive for SARS-CoV-2, we found four distinguishing mutations in the S gene that gave rise to the mink-adapted variant (G75V, M177T, Y453F, and C1247F) and others. CONCLUSIONS: Zoonotic spill-over of SARS-CoV-2 can occur from mink to human.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , COVID-19/veterinaria , Granjas , Humanos , Visón , SARS-CoV-2/genética , Zoonosis
8.
Viruses ; 13(10)2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34696492

RESUMEN

African swine fever (ASF), caused by a DNA virus (ASFV) belonging to genus Asfivirus of the Asfarviridae family, is one of the most threatening diseases of suids. During last few years, it has spread among populations of wild boars and pigs in countries of Eastern and Central Europe, causing huge economical losses. While local ASF occurrence is positively correlated with wild boar density, ecology of this species (social structure, movement behavior) constrains long-range disease transmission. Thus, it has been speculated that carnivores known for high daily movement and long-range dispersal ability, such as the wolf (Canis lupus), may be indirect ASFV vectors. To test this, we analyzed 62 wolf fecal samples for the presence of ASFV DNA, collected mostly in parts of Poland declared as ASF zones. This dataset included 20 samples confirmed to contain wild boar remains, 13 of which were collected near places where GPS-collared wolves fed on dead wild boars. All analyzed fecal samples were ASFV-negative. On the other hand, eight out of nine wild boar carcasses that were fed on by telemetrically studied wolves were positive. Thus, our results suggest that when wolves consume meat of ASFV-positive wild boars, the virus does not survive the passage through intestinal tract. Additionally, wolves may limit ASFV transmission by removing infectious carrion. We speculate that in areas where telemetric studies on large carnivores are performed, data from GPS collars could be used to enhance efficiency of carcass search, which is one of the main preventive measures to constrain ASF spread.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana/virología , Heces/virología , Lobos/virología , Fiebre Porcina Africana/transmisión , Animales , Asfarviridae , Masculino , Polonia , Estructura Social , Porcinos
9.
Euro Surveill ; 26(39)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34596017

RESUMEN

Routine genomic surveillance on samples from COVID-19 patients collected in Poland during summer 2021 revealed the emergence of a SARS-CoV-2 Delta variant with a large 872 nt deletion. This change, confirmed by Sanger and deep sequencing, causes complete loss of ORF7a, ORF7b, and ORF8 genes. The index case carrying the deletion is unknown. The standard pipeline for sequencing may mask this deletion with a long stretch of N's. Effects of this deletion on phenotype or immune evasion needs further study.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Polonia
10.
Emerg Infect Dis ; 27(9): 2333-2339, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34423763

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of coronavirus disease and has been spreading worldwide since December 2019. The virus can infect different animal species under experimental conditions, and mink on fur farms in Europe and other areas are susceptible to SARS-CoV-2 infection. We investigated SARS-CoV-2 infection in 91 mink from a farm in northern Poland. Using reverse transcription PCR, antigen detection, and next-generation sequencing, we confirmed that 15 animals were positive for SARS-CoV-2. We verified this finding by sequencing full viral genomes and confirmed a virus variant that has sporadic mutations through the full genome sequence in the spike protein (G75V and C1247F). We were unable to find other SARS-CoV-2 sequences simultaneously containing these 2 mutations. Country-scale monitoring by veterinary inspection should be implemented to detect SARS-CoV-2 in other mink farms.


Asunto(s)
COVID-19 , Visón , Animales , Granjas , Humanos , Polonia/epidemiología , SARS-CoV-2
11.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33414352

RESUMEN

Here, we report the coding-complete genome sequences of six influenza A(H1N1) strains that were detected in Vilnius, Lithuania, among patients exhibiting influenza-like symptoms during the 2009-2010 epidemic season, within national influenza surveillance. Several mutations were found in genes encoding hemagglutinin and neuraminidase, in comparison with the A/California/07/2009 reference strain (GenBank accession numbers NC_026433 and NC_026434).

12.
Pharmaceuticals (Basel) ; 13(12)2020 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-33322151

RESUMEN

Tick-borne encephalitis virus (TBEV) transmitted by ticks is a pathogen of great medical importance. As still no effective antiviral treatment is available, in the present study, a series of uridine glycoconjugates containing amide or/and 1,2,3-triazole moiety in the linker structure was synthesized and evaluated for the antiviral activity against two strains of TBEV: a highly virulent Hypr strain and less virulent Neudoerfl strain, using standardized previously in vitro assays. Our data have shown that four compounds from the series (18-21) possess strong activity against both TBEV strains. The half maximal inhibitory concentration (IC50) values of compounds 18-21 were between 15.1 and 3.7 µM depending on the virus strain, which along with low cytotoxicity resulted in high values of the selectivity index (SI). The obtained results suggest that these compounds may be promising candidates for further development of new therapies against flaviviruses.

13.
Viruses ; 11(9)2019 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-31450681

RESUMEN

Newcastle disease (ND) is responsible for significant economic losses in the poultry industry. The disease is caused by virulent strains of Avian avulavirus 1 (AAvV-1), a species within the family Paramyxoviridae. We developed a recombinant construct based on the herpesvirus of turkeys (HVT) as a vector expressing two genes: F and HN (HVT-NDV-F-HN) derived from the AAvV-1 genotype VI ("pigeon variant" of AAvV-1). This recombinant viral vaccine candidate was used to subcutaneously immunize one group of specific pathogen-free (SPF) chickens and two groups of broiler chickens (20 one-day-old birds/group). Humoral immune response was evaluated by hemagglutination-inhibition test and enzyme-linked immunosorbent assay (ELISA). The efficacy of the immunization was assessed in two separate challenge studies performed at 6 weeks of age with the use of virulent AAvV-1 strains representing heterologous genotypes IV and VII. The developed vaccine candidate elicited complete protection in SPF chickens since none of the birds became sick or died during the 2-week observation period. In the broiler groups, 90% and 100% clinical protection were achieved after challenges with AAvV-1 of IV and VII genotypes, respectively. We found no obvious relationship between antibody levels and protection assessed in broilers in the challenge study. The developed recombinant HVT-NDV-F-HN construct containing genes from a genotype VI AAvV-1 offers promising results as a potential vaccine candidate against ND in chickens.


Asunto(s)
Proteína HN/inmunología , Inmunización/veterinaria , Virus de la Enfermedad de Newcastle , Vacunas Sintéticas/inmunología , Proteínas Virales de Fusión/inmunología , Animales , Antígenos Virales/biosíntesis , Antígenos Virales/genética , Pollos/virología , Protección Cruzada , Genes Virales , Proteína HN/biosíntesis , Proteína HN/genética , Pruebas de Inhibición de Hemaglutinación , Herpesvirus Meleágrido 1/genética , Herpesvirus Meleágrido 1/inmunología , Herpesvirus Meleágrido 1/metabolismo , Inmunidad Heteróloga , Enfermedad de Newcastle/inmunología , Enfermedad de Newcastle/prevención & control , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/inmunología , Enfermedades de las Aves de Corral/virología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Vacunas Sintéticas/virología , Proteínas Virales de Fusión/biosíntesis , Proteínas Virales de Fusión/genética , Vacunas Virales/biosíntesis , Vacunas Virales/inmunología
14.
J Vet Res ; 63(1): 1-6, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30989129

RESUMEN

INTRODUCTION: Field isolates of bovine leukaemia virus (BLV) show the presence of a few amino acid substitutions in major conformational G and H epitopes on surface glycoprotein gp51. Potentially, these substitutions can affect the 3D structure of these epitopes leading to their diminished immunoreactivity. The aim of this study was to express three gp51 glycoproteins carrying mutated epitopes as recombinant baculovirus proteins in insect cells to test their immunoreactivity with bovine sera. MATERIAL AND METHODS: Env gene chimeras encoding mutated epitopes G and H in the env backbone of BLV FLK strain were constructed, cloned into pFastBac1 vector, and expressed in baculovirus. RESULTS: The presence of recombinant gp51 protein in Sf9 insect cells was confirmed using monoclonal antibodies. ELISA tests were developed to check the immunoreactivity of recombinant protein with bovine sera. CONCLUSION: Recombinant gp51 proteins with altered G and H epitopes can be used for further studies to analyse the serological response of bovine sera towards BLV antigenic variants.

15.
Trends Biotechnol ; 37(11): 1202-1216, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31003718

RESUMEN

Many viruses belonging to the Flaviviridae family are transmitted by invertebrate vectors. Among those transmitted by mosquitos, there are many human pathogens of great medical importance, such as Japanese encephalitis virus, West Nile virus, dengue virus, Zika virus, or yellow fever virus. Millions of people contract mosquito-borne diseases each year, leading to thousands of deaths. Co-circulation of genetically similar flaviviruses in the same areas result in the generation of crossreactive antibodies, which is of serious concern for the development of effective vaccines and diagnostic tests. This review provides comprehensive insight into the potential use of virus-like particles as safe and effective antigens in both diagnostics tests, as well as in the development of vaccines against several mosquito-borne flaviviruses.


Asunto(s)
Infecciones por Flavivirus/inmunología , Infecciones por Flavivirus/transmisión , Flavivirus/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Animales , Culicidae/virología , Humanos , Mosquitos Vectores/virología
16.
Molecules ; 24(6)2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901934

RESUMEN

Tick-borne encephalitis virus (TBEV) is a causative agent of tick-borne encephalitis (TBE), one of the most important human infections involving the central nervous system. Although effective vaccines are available on the market, they are recommended only in endemic areas. Despite many attempts, there are still no specific antiviral therapies for TBEV treatment. Previously, we synthesized a series of uridine derivatives of 2-deoxy sugars and proved that some compounds show antiviral activity against viruses from the Flaviviridae and Orthomyxoviridae families targeting the late steps of the N-glycosylation process, affecting the maturation of viral proteins. In this study, we evaluated a series of uridine derivatives of 2-deoxy sugars for their antiviral properties against two strains of the tick-borne encephalitis virus; the highly virulent TBEV strain Hypr and the less virulent strain Neudoerfl. Four compounds (2, 4, 10, and 11) showed significant anti-TBEV activity with IC50 values ranging from 1.4 to 10.2 µM and low cytotoxicity. The obtained results indicate that glycosylation inhibitors, which may interact with glycosylated membrane TBEV E and prM proteins, might be promising candidates for future antiviral therapies against TBEV.


Asunto(s)
Antivirales/farmacología , Desoxiazúcares/farmacología , Virus de la Encefalitis Transmitidos por Garrapatas/efectos de los fármacos , Uridina/farmacología , Antivirales/química , Línea Celular Tumoral , Células Cultivadas , Desoxiazúcares/química , Relación Dosis-Respuesta a Droga , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Biosíntesis de Proteínas/efectos de los fármacos , Uridina/análogos & derivados , Uridina/química , Ensayo de Placa Viral
17.
J Immunol Res ; 2019: 2463731, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30729136

RESUMEN

H1N1 influenza virus is still regarded as a serious pandemic threat. The most effective method of protection against influenza virus and the way to reduce the risk of epidemic or pandemic spread is vaccination. Influenza vaccine manufactured in a traditional way, though well developed, has some drawbacks and limitations which have stimulated interest in developing alternative approaches. In this study, we demonstrate that the recombinant H1 vaccine based on the hydrophilic haemagglutinin (HA) domain and produced in the yeast system elicited high titres of serum haemagglutination-inhibiting antibodies in mice. Transmission electron microscopy showed that H1 antigen oligomerizes into functional higher molecular forms similar to rosette-like structures. Analysis of the N-linked glycans using mass spectrometry revealed that the H1 protein is glycosylated at the same sites as the native HA. The recombinant antigen was secreted into a culture medium reaching approximately 10 mg/l. These results suggest that H1 produced in Pichia pastoris can be considered as the vaccine candidate against H1N1 virus.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Animales , Antígenos Virales/inmunología , Femenino , Inmunización , Vacunas contra la Influenza/genética , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Pichia/genética , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
18.
Viruses ; 11(2)2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30699913

RESUMEN

Baculoviridae is a highly diverse family of rod-shaped viruses with double-stranded DNA. To date, almost 100 species have had their complete genomic sequences deposited in the GenBank database, a quarter of which comprises granuloviruses (GVs). Many of the genomes are sequenced using next-generation sequencing, which is currently considered the best method for characterizing new species, but it is time-consuming and expensive. Baculoviruses form a safe alternative to overused chemical pesticides and therefore there is a constant need for identifying new species that can be active components of novel biological insecticides. In this study, we have described a fast and reliable method for the detection of new and differentiation of previously analyzed granulovirus species based on a real-time polymerase chain reaction (PCR) technique with melting point curve analysis. The sequences of highly conserved baculovirus genes, such as granulin and late expression factors 8 and 9 (lef-8 and lef-9), derived from GVs available to date have been analyzed and used for degenerate primer design. The developed method was tested on a representative group of eight betabaculoviruses with comparisons of melting temperatures to allow for quick and preliminary granulovirus detection. The proposed real-time PCR procedure may be a very useful tool as an easily accessible screening method in a majority of laboratories.


Asunto(s)
Genoma Viral , Granulovirus/clasificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Proteínas Virales/genética , Animales , Cartilla de ADN/genética , ADN Viral/genética , Lepidópteros/virología , Sistemas de Lectura Abierta , Análisis de Secuencia de ADN , Temperatura de Transición
19.
J Invertebr Pathol ; 157: 90-99, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30102885

RESUMEN

Cryptophlebia peltastica is an agricultural pest of litchis and macadamias in South Africa with phytosanitary status for certain markets. Current control methods rely on chemical, cultural and classical biological control. However, a microbial control option has not been developed. An Alphabaculovirus from C. peltastica was recovered from a laboratory reared colony and morphologically characterised by transmission electron microscopy (TEM). Analysis of occlusion bodies indicated a single NPV (SNPV) varying in size from 421 to 1263 nm. PCR amplification and sequencing of the polh gene region using universal primers followed by BLAST analysis revealed a 93% similarity to a partial polh gene sequence from Epinotia granitalis NPV. Further genetic characterisation involving single restriction endonuclease (REN) digestion of genomic DNA was carried out to generate profiles for comparison against other baculovirus species and potential new isolates of the same virus. The complete genome of the virus was sequenced, assembled and analysed for a more comprehensive genetic analysis. The genome was 115728 base pairs (bp) in length with a GC content of 37.2%. A total of 126 open reading frames (ORFs) were identified with minimal overlap and no preference in orientation. Bioassays were used to determine the virulence of the NPV against C. peltastica. The NPV was virulent against C. peltastica with an LC50 value of 6.46 × 103 OBs/ml and an LC90 value of 2.46 × 105 OBs/ml, and time mortality ranging between 76.32 h and 93.49 h. This is the first study to describe the isolation and genetic characterisation of a novel SNPV from C. peltastica, which has potential for development into a biopesticide for the control of this pest in South Africa.


Asunto(s)
Baculoviridae/patogenicidad , Mariposas Nocturnas/virología , Control Biológico de Vectores/métodos , Animales , ADN Viral/genética , Genes Virales , Virulencia/genética
20.
Molecules ; 23(7)2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29954068

RESUMEN

Hepatitis C virus (HCV), the etiological agent of the most common and dangerous diseases of the liver, is a major health problem worldwide. Despite many attempts, there is still no vaccine available. Although many drugs have been approved for use mostly in combination regimen, their high costs make them out of reach in less developed regions. Previously, we have synthesized a series of compounds belonging to uridine derivatives of 2-deoxy sugars and have proved that some of them possess antiviral activity against influenza A virus associated with N-glycosylation inhibition. Here, we analyze the antiviral properties of these compounds against HCV. Using cell culture-derived HCV (HCVcc), HCV pseudoparticles (HCVpp), and replicon cell lines, we have shown high anti-HCV activity of two compounds. Our results indicated that compounds 2 and 4 significantly reduced HCVcc propagation with IC50 values in low µM range. Further experiments using the HCVpp system confirmed that both compounds significantly impaired the infectivity of produced HCVpp due to the inhibition of the correct maturation of viral glycoproteins. Overall, our results suggest that inhibiting the glycosylation process might be a good target for new therapeutics not only against HCV, but other important viral pathogens which contain envelopes with highly glycosylated proteins.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Desoxiazúcares/química , Desoxiazúcares/farmacología , Hepacivirus/efectos de los fármacos , Uridina/química , Hepatitis C/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...