Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Antioxidants (Basel) ; 12(9)2023 Sep 04.
Article En | MEDLINE | ID: mdl-37760017

Cannabidiol (CBD) is a nonpsychoactive phytocannabinoid that can be found in Cannabis sativa and possesses numerous pharmacological effects. Due to these promising effects, CBD can be used in a wide variety of diseases, for instance cardiovascular diseases. However, CBD, like tetrahydrocannabinol (THC), has low bioavailability, poor water solubility, and a variable pharmacokinetic profile, which hinders its therapeutic use. Chemical derivatization of CBD offers us potential ways to overcome these issues. We prepared three new CBD derivatives substituted on the aromatic ring by Mannich-type reactions, which have not been described so far for the modification of cannabinoids, and studied the protective effect they have on cardiomyocytes exposed to oxidative stress and hypoxia/reoxygenation (H/R) compared to the parent compound. An MTT assay was performed to determine the viability of rat cardiomyocytes treated with test compounds. Trypan blue exclusion and lactate dehydrogenase (LDH) release assays were carried out to study the effect of the new compounds in cells exposed to H2O2 or hypoxia/reoxygenation (H/R). Direct antioxidant activity was evaluated by a total antioxidant capacity (TAC) assay. To study antioxidant protein levels, HO-1, SOD, catalase, and Western blot analysis were carried out. pIC50 (the negative log of the IC50) values were as follows: CBD1: 4.113, CBD2: 3.995, CBD3: 4.190, and CBD: 4.671. The newly synthesized CBD derivatives prevented cell death induced by H/R, especially CBD2. CBD has the largest direct antioxidant activity. The levels of antioxidant proteins were increased differently after pretreatment with synthetic CBD derivatives and CBD. Taken together, our newly synthesized CBD derivatives are able to decrease cytotoxicity during oxidative stress and H/R. The compounds have similar or better effects than CBD on H9c2 cells.

2.
Pharmacol Res Perspect ; 11(3): e01091, 2023 06.
Article En | MEDLINE | ID: mdl-37190667

Previous investigations have demonstrated that treatment of animals with rapamycin increases levels of autophagy, which is a process by which cells degrade intracellular detritus, thus suppressing the emergence of senescent cells, whose pro-inflammatory properties, are primary drivers of age-associated physical decline. A hypothesis is tested here that rapamycin treatment of mice approaching the end of their normal lifespan exhibits increased survival, enhanced expression of autophagic proteins; and klotho protein-a biomarker of aging that affects whole organism senescence, and systemic suppression of inflammatory mediator production. Test groups of 24-month-old C57BL mice were injected intraperitoneally with either 1.5 mg/kg/week rapamycin or vehicle. All mice administered rapamycin survived the 12-week course, whereas 43% of the controls died. Relative to controls, rapamycin-treated mice experienced minor but significant weight loss; moreover, nonsignificant trends toward decreased levels of leptin, IL-6, IL-1ß, TNF-α, IL-1α, and IGF-1, along with slight elevations in VEGF, MCP-1 were observed in the blood serum of rapamycin-treated mice. Rapamycin-treated mice exhibited significantly enhanced autophagy and elevated expression of klotho protein, particularly in the kidney. Rapamycin treatment also increased cardiomyocyte Ca2+ -sensitivity and enhanced the rate constant of force re-development, which may also contribute to the enhanced survival rate in elderly mice.


Klotho Proteins , Sirolimus , Mice , Animals , Sirolimus/pharmacology , Mice, Inbred C57BL , Aging , Biomarkers , Autophagy
3.
Int J Mol Sci ; 24(6)2023 Mar 09.
Article En | MEDLINE | ID: mdl-36982341

Doxorubicin (DOX) is an efficacious and commonly used chemotherapeutic agent. However, its clinical use is limited due to dose-dependent cardiotoxicity. Several mechanisms have been proposed to play a role in DOX-induced cardiotoxicity, such as free radical generation, oxidative stress, mitochondrial dysfunction, altered apoptosis, and autophagy dysregulation. BGP-15 has a wide range of cytoprotective effects, including mitochondrial protection, but up to now, there is no information about any of its beneficial effects on DOX-induced cardiotoxicity. In this study, we investigated whether the protective effects of BGP-15 pretreatment are predominantly via preserving mitochondrial function, reducing mitochondrial ROS production, and if it has an influence on autophagy processes. H9c2 cardiomyocytes were pretreated with 50 µM of BGP-15 prior to different concentrations (0.1; 1; 3 µM) of DOX exposure. We found that BGP-15 pretreatment significantly improved the cell viability after 12 and 24 h DOX exposure. BGP-15 ameliorated lactate dehydrogenase (LDH) release and cell apoptosis induced by DOX. Additionally, BGP-15 pretreatment attenuated the level of mitochondrial oxidative stress and the loss of mitochondrial membrane potential. Moreover, BGP-15 further slightly modulated the autophagic flux, which was measurably decreased by DOX treatment. Hence, our findings clearly revealed that BGP-15 might be a promising agent for alleviating the cardiotoxicity of DOX. This critical mechanism appears to be given by the protective effect of BGP-15 on mitochondria.


Cardiotoxicity , Doxorubicin , Humans , Cardiotoxicity/metabolism , Reactive Oxygen Species/metabolism , Cell Line , Doxorubicin/toxicity , Oxidative Stress , Myocytes, Cardiac/metabolism , Mitochondria/metabolism , Apoptosis , Antibiotics, Antineoplastic/toxicity
4.
Data Brief ; 25: 104146, 2019 Aug.
Article En | MEDLINE | ID: mdl-31297426

Herein 1H and 13C NMR spectra of ERJ-500, a new hybrid aspirin derivative, covalently conjugated to nitrogen monoxide donor linsidomine are presented as well as NMR spectra of its synthetic intermediate compounds. HPLC-MS measurements data are also included, demonstrating the stability of the linsidomine-aspirin hybrid in oxidation reactions. This data article also concerns miscellaneous myocardial parameters of isolated rat hearts as a complementation of the tables shown in the paper entitled "A new, vasoactive hybrid aspirin containing nitrogen monoxide-releasing molsidomine moiety" Szoke et al., 2019. Column tables represent data of aorta flow, aortic pressure, derivated aortic pressure and cardiac output.

5.
Biochem Biophys Res Commun ; 511(4): 732-738, 2019 04 16.
Article En | MEDLINE | ID: mdl-30833080

Several groups have demonstrated that induction of heme-oxygenase-1 (HO-1) could protect the myocardium against ischemic events; however, heme accumulation could lead to toxicity. The aim of the present study was to investigate the role of autophagy in heme toxicity. H9c2 cardiomyoblast cells were treated with different dose of hemin or cobalt-protoporphyrin IX (CoPPIX) or vehicle. Cell viability was measured by MTT assay. DCF and MitoSOX staining was employed to detect reactive oxygen species. Western blot analysis was performed to analyse the levels of HO-1, certain autophagy related proteins and pro-caspase-3 as an apoptosis marker. To study the autophagic flux, CytoID staining was carried out and cells were analyzed by fluorescence microscope and flow cytometry. Decreased cell viability was detected at high dose of hemin and CoPPIX treated H9c2 cells in a dose-dependent manner. Furthermore, at concentration of the inducers used in the present study a significantly enhanced level of ROS were detected. As it was expected both treatments induced a robust elevation of HO-1 level. In addition, the Beclin-1- independent autophagy was significantly increased, but caused a defective autophagic flux with triggered activation of caspase-3. In conclusion, these results suggest that overexpression of HO-1 by high dose of hemin and CoPPIX can induce cell toxicity in H9c2 cells via enhanced ROS level and impaired autophagy.


Autophagy , Heme Oxygenase-1/metabolism , Hemin/metabolism , Myoblasts, Cardiac/cytology , Protoporphyrins/metabolism , Animals , Cell Survival , Myoblasts, Cardiac/metabolism , Oxidative Stress , Rats , Reactive Oxygen Species/metabolism
6.
Eur J Pharm Sci ; 131: 159-166, 2019 Apr 01.
Article En | MEDLINE | ID: mdl-30779982

Ischemic heart conditions are among the main causes of sudden cardiac death worldwide. One of the strategies for avoiding myocardial infarction is the low-dose, prophylactic use of acetylsalicylic acid (ASA), an inhibitor of platelet aggregation. To avoid the gastrointestinal damage, ASA prodrugs bearing nitric oxide (NO)-donating moiety covalently conjugated to ASA have been synthesized and evaluated extensively worldwide. Herein the synthesis of a new hybrid ASA ester covalently attached to the NO donor linsidomine, an active metabolite of molsidomine (MOL) is reported. Cell viability assay and hemolysis tests were performed in H9c2 cells and rat erythrocytes, respectively. Our new compound, the ERJ-500 not affected negatively the viability of living cells in the concentration range of 100 nM to 100 µM. Using the ex vivo Langendorff method on hearts originated from female rats, compound ERJ-500 displayed a dose-dependent, outwashable vasodilative effect in coronary arteries. Vasodilation was observed on isolated working heart model as well, with elevated stroke volume in hearts treated with ERJ-500. Furthermore, a decreased infarct size was also noticed in ERJ-500 treated hearts after ischemia/reperfusion. Based on these observations it can be expected that our new hybrid ASA may contribute to new pharmacological tool in the therapy of ischemic heart conditions and associated syndromes.


Aspirin/analogs & derivatives , Aspirin/administration & dosage , Heart/drug effects , Molsidomine/administration & dosage , Nitric Oxide/administration & dosage , Vasodilator Agents/administration & dosage , Animals , Aspirin/pharmacology , Cell Line , Coronary Circulation/drug effects , Erythrocytes/drug effects , Female , Heart/physiology , Heart Rate/drug effects , Hemolysis/drug effects , Rats, Sprague-Dawley , Vasodilation/drug effects
7.
Int J Mol Sci ; 19(4)2018 Mar 28.
Article En | MEDLINE | ID: mdl-29597322

Recent evidence from studies suggests that aged black garlic also has an effect on health. The major aim of the present study is to compare the effect of raw and aged black garlic on postischemic cardiac recovery. Male Sprague Dawley rats were randomly divided into three groups. Animals of the first group were fed with raw garlic, animals of the second group received aged black garlic, while the third group served as vehicle-treated controls. Upon conclusion of the treatment, isolated hearts were undertaken to ischemia/reperfusion. Heart function and infarct size were measured and the level of HO-1 and iNOS were studied. Superior postischemic cardiac function and reduced infarct size in both garlic treated groups compared to the drug-free control group, indicated cardioprotective effects. However, no significant differences between the garlic treated groups were observed. Western blot analysis revealed that raw garlic enhanced the level of HO-1 before ischemia, while in ischemic samples, we found elevated HO-1 expression in both garlic treated groups. The level of iNOS was the same before ischemia in all groups, however, a markedly reduced iNOS level in ischemic/reperfused hearts originating from control and raw garlic treated animals was observed. Samples from aged black garlic treated animals demonstrated that the level of iNOS was not significantly reduced after ischemia/reperfusion. Taken together these results indicate that not only raw but also aged black garlic possess a cardioprotective effect.


Garlic , Heme Oxygenase (Decyclizing)/metabolism , Myocardial Reperfusion Injury/diet therapy , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Nitric Oxide Synthase Type II/metabolism , Animals , Male , Myocardial Reperfusion Injury/pathology , Myocardium/pathology , Rats , Rats, Sprague-Dawley
8.
Molecules ; 22(3)2017 Mar 20.
Article En | MEDLINE | ID: mdl-28335529

Objective: A rat model is here used to test a hypothesis that Momordica charantia (Bitter melon (BM)) extract favorably alters processes in cardiovascular tissue and is systemically relevant to the pathophysiology of type 2 diabetes (T2DM) and related cardiovascular disease. Methods: Male Lean and Zucker Obese (ZO) rats were gavage-treated for six weeks with 400 mg/kg body weight bitter melon (BM) extract suspended in mucin-water vehicle, or with vehicle (Control). Animals were segregated into four treatment groups, 10 animals in each group, according to strain (Lean or ZO) and treatment (Control or BM). Following six-week treatment periods, peripheral blood was collected from selected animals, followed by sacrifice, thoracotomy and mounting of isolated working heart setup. Results: Body mass of both Lean and ZO rats was unaffected by treatment, likewise, peripheral blood fasting glucose levels showed no significant treatment-related effects. However, some BM treatment-related improvement was noted in postischemic cardiac functions when Lean, BM-treated animals were compared to vehicle treated Lean control rats. Treatment of Lean, but not ZO, rats significantly reduced the magnitude of infarcted zone in isolated hearts subjected to 30 min of ischemia followed by 2 h of working mode reperfusion. Immunohistochemical demonstration of caspase-3 expression by isolated heart tissues subjected to 30 min of ischemia followed by 2 h of reperfusion, revealed significant correlation between BM treatment and reduced expression of this enzyme in hearts obtained from both Lean and ZO animals. The hierarchy and order of caspase-3 expression from highest to lowest was as follows: ZO rats receiving vehicle > ZO rats receiving BM extract > Lean rats treated receiving vehicle > Lean rats administered BM extract. Outcomes of analyses of peripheral blood content of cardiac-related analytics: with particular relevance to clinical application was a significant elevation in blood of ZO and ZO BM-treated, versus Lean rats of total cholesterol (high density lipoprotein HDL-c + low density lipoprotein LDL-c), with an inferred increase in HDL-c/LDL-c ratio-an outcome associated with decreased risk of atherosclerotic disease. Conclusions: BM extract failed to positively affect T2DM- and cardiovascular-related outcomes at a level suggesting use as a standalone treatment. Nevertheless, the encouraging effects of BM in enhancement of cardiac function, suppression of post-ischemic/reperfused infarct size extent and capacity to modulate serum cholesterol, will likely make it useful as an adjuvant therapy for the management of T2DM and related cardiovascular diseases.


Diabetes Mellitus, Type 2/complications , Momordica charantia/chemistry , Myocardial Ischemia/physiopathology , Obesity/complications , Plant Extracts/administration & dosage , Animals , Caspase 3/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Drug Administration Schedule , Gene Expression Regulation/drug effects , Heart Function Tests/drug effects , Male , Myocardial Ischemia/drug therapy , Myocardial Ischemia/metabolism , Obesity/metabolism , Plant Extracts/pharmacology , Rats , Rats, Zucker
...