Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Materials (Basel) ; 16(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37049183

RESUMEN

Environmental surfaces, including high-touch surfaces (HITS), bear a high risk of becoming fomites and can participate in viral dissemination through contact and transmission to other persons, due to the capacity of viruses to persist on such contaminated surface before being transferred to hands or other supports at sufficient concentration to initiate infection through direct contact. Interest in the development of self-decontaminating materials as additional safety measures towards preventing viral infectious disease transmission has been growing. Active materials are expected to reduce the viral charge on surfaces over time and consequently limit viral transmission capacity through direct contact. In this study, we compared antiviral activities obtained using three different experimental procedures by assessing the survival of an enveloped virus (influenza virus) and non-enveloped virus (feline calicivirus) over time on a reference surface and three active materials. Our data show that experimental test conditions can have a substantial impact of over 1 log10 on the antiviral activity of active material for the same contact period, depending on the nature of the virus. We then developed an innovative and reproducible approach based on finger-pad transfer to evaluate the antiviral activity of HITS against a murine norovirus inoculum under conditions closely reflecting real-life surface exposure.

2.
J Am Assoc Lab Anim Sci ; 60(5): 529-538, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34416928

RESUMEN

Cage washing is a key process of the biosecurity program in rodent facilities. For the current study, we developed systems (i. e., magnet attachments, quantitative biologic indicators (Q-BI), and measurement of thermal disinfection at equipment level) to assess the microbial decontamination achieved by a rodent equipment washer with and without thermal disinfection. 99% of the magnets remained in position to hold Q-BI and temperature probes inside cages, water bottles or at equipment level across a cabinet washer chamber with loads dedicated to either housing or drinking devices. Various types of Q-BI for Bacillus atrophaeus, Enterococcus hirae and minute virus of mice were tested. To simulate potential interference from biologic material and animal waste during cage processing, Q-BI contained test soil: bovine serum albumin with or without feces. As a quantitative indicator of microbial decontamination, the reduction factor was calculated by comparing microbial load of processed Q-BI with unprocessed controls. We detected variation between Q-BI types and assessed the washer's ability to reduce microbial load on equipment. Reduction factor results were consistent with the Q-BI type and showed that the washing and thermal disinfection cycle could reduce loads of vegetative bacteria, virus and spore by 5 log10 CFU/TCID50 and beyond. Thermal disinfection was monitored with temperature probes linked to data loggers recording live. We measured the period of exposure to temperatures above 82.2 °C, to calculate A0, the theoretical indicator for microbial lethality by thermal disinfection, and to assess whether the cabinet washer could pass the minimum quality standard of A0 = 600. Temperature curves showed an A0 > 1000 consistently across all processed equipment during thermal disinfection. These data suggest that, when sterilization is not required, a cabinet washer with thermal disinfection could replace an autoclave and reduce environmental and financial waste.


Asunto(s)
Productos Biológicos , Virus , Animales , Bacillus , Bacterias , Desinfección , Ratones , Esporas
3.
Microorganisms ; 8(12)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322535

RESUMEN

An increasing amount of evidence indicates a relatively high prevalence of superinfections associated with coronavirus disease 2019 (COVID-19), including invasive aspergillosis, but the underlying mechanisms remain to be characterized. In the present study, to better understand the biological impact of superinfection, we determine and compare the host transcriptional response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) versus Aspergillus superinfection, using a model of reconstituted human airway epithelium. Our analyses reveal that both simple infection and superinfection induce strong deregulation of core components of innate immune and inflammatory responses, with a stronger response to superinfection in the bronchial epithelial model compared to its nasal counterpart. Our results also highlight unique transcriptional footprints of SARS-CoV-2 Aspergillus superinfection, such as an imbalanced type I/type III IFN, and an induction of several monocyte and neutrophil associated chemokines, that could be useful for the understanding of Aspergillus-associated COVID-19 and also the management of severe forms of aspergillosis in this specific context.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...