Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Vet Hung ; 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35575985

RESUMEN

Variance, covariance components, heritability, breeding values (BV) and genetic trends in calving interval (CI) of the Limousin population in Hungary were evaluated. A total of 3,008 CI data of 779 cows from three herds in 1996-2016 were processed. For influencing effects GLM method, for population genetic parameters and BV estimation BLUP animal model, for trend analyses linear regression was applied. The average CI obtained was 378.8 ± 3.1 days. The variance distribution components of the phenotype were as follow: age of cow at calving 34.30%, season of calving 26.09%, year of calving 23.00%, sire 7.45%, herd 3.23%, sex of calf 0.33% and type of calving 0.30%. The heritability of CI proved to be low (h2 d = 0.04 ± 0.02 and 0.03 ± 0.02; h2 m = 0.01 ± 0.02). The repeatability was low (R = 0.03 ± 0.02). Based on the phenotypic trend calculation, the CI of cows decreased by an average of 0.60 days per year (R 2 = 0.19; P < 0.05). In case of genetic trend calculation, the average BV of sires in CI increased 0.07 and 0.17 days per year (R 2 = 0.23 and 0.27; P < 0.05).

2.
Asian-Australas J Anim Sci ; 32(2): 176-182, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30056682

RESUMEN

OBJECTIVE: This study was conducted to investigate basic information on genetic structure and characteristics of Limousin population in Hungary. Obtained results will be taken into consideration when adopting the new breeding strategy by the Association of Hungarian Limousin and Blonde d'Aquitaine Breeders (AHLBB). METHODS: Genetic diversity and phylogenetic relationship of 3,443 Limousin cattle from 16 different herds were investigated by performing genotyping using 18 microsatellite markers. Amplified DNA was genotyped using an automated genetic analyzer. RESULTS: Mean of effective alleles (ne) of the populations was 3.77. Population C had the lowest number of effective alleles (3.01) and the lowest inbreeding coefficient (FIS) value (-0.15). Principal component analysis of estimated genetic distance (FST) values (p<0.000) revealed two herds (C and E) distinct from the majority of other Limousin herds. The pairwise FST values of population C compared to the others (0.066 to 0.120) fell into the range of moderate genetic distance: 0.050 to 0.150, while population E displayed also moderate genetic distance (FST values in range 0.052 to 0.064) but only to six populations (G, H, J, L, N, and P). FST(C-E) was 0.148, all other pairs -excluding C and E herds- displayed low genetic distance (FST<0.049). Population D, F, I, J, K, L, N, O, and P carried private alleles, which alleles belonged to 1.1% of the individuals. Most probable number of clusters (K) were 2 and 7 determined by Structure and BAPS software. CONCLUSION: This study showed useful genetic diversity and phylogenetic relationship data that can be utilized for the development of a new breeding strategy by AHLBB. The results presented could also contribute to the proper selection of animals for further whole genome scan studies of Limousins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA