Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 38
1.
Front Plant Sci ; 15: 1365490, 2024.
Article En | MEDLINE | ID: mdl-38571716

Arabinogalactan proteins (AGPs) are proteoglycans with an unusual molecular structure characterised by the presence of a protein part and carbohydrate chains. Their specific properties at different stages of the fruit ripening programme make AGPs unique markers of this process. An important function of AGPs is to co-form an amorphous extracellular matrix in the cell wall-plasma membrane continuum; thus, changes in the structure of these molecules can determine the presence and distribution of other components. The aim of the current work was to characterise the molecular structure and localisation of AGPs during the fruit ripening process in transgenic lines with silencing and overexpression of SlP4H3 genes (prolyl 4 hydroxylase 3). The objective was accomplished through comprehensive and comparative in situ and ex situ analyses of AGPs from the fruit of transgenic lines and wild-type plants at specific stages of ripening. The experiment showed that changes in prolyl 4 hydroxylases (P4H3) activity affected the content of AGPs and the progress in their modifications in the ongoing ripening process. The analysis of the transgenic lines confirmed the presence of AGPs with high molecular weights (120-60 kDa) at all the examined stages, but a changed pattern of the molecular features of AGPs was found in the last ripening stages, compared to WT. In addition to the AGP molecular changes, morphological modifications of fruit tissue and alterations in the spatio-temporal pattern of AGP distribution at the subcellular level were detected in the transgenic lines with the progression of the ripening process. The work highlights the impact of AGPs and their alterations on the fruit cell wall and changes in AGPs associated with the progression of the ripening process.

2.
Appl Spectrosc ; 78(6): 591-604, 2024 Jun.
Article En | MEDLINE | ID: mdl-38529584

Maize (Zea mays) is one of the most cultivated plants in the world. Due to the large area, the scale of its production, and the demand to increase the yield, there is a need for new environmentally friendly fertilizers. One group of such candidates is bacteria-produced nodulation (or nod) factors. Limited research has explored the impact of nodulation, factors on maize within field conditions, with most studies restricted to greenhouse settings and early developmental stages. Additionally, there is a scarcity of investigations that elucidate the metabolic alterations in the maize stem due to nod-factor exposure. It was therefore the aim of this study. Maize stem's metabolites and fibers were analyzed with various imaging analytical techniques: matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI), Raman spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR), and diffuse reflectance infrared Fourier transform spectroscopy. Moreover, the biochemical analyses were used to evaluate the proteins and soluble carbohydrates concentration and total phenolic content. These techniques were used to evaluate the influence of nod factor-based biofertilizer on the growth of a non-symbiotic plant, maize. The biofertilizer increased the grain yield and the stem mass. Moreover, the spectroscopic and biochemical investigation proved the appreciable biochemical changes in the stems of the maize in biofertilizer-treated plants. Noticeable changes were found in the spatial distribution and the increase in the concentration of flavonoids such as maysin, quercetin, and rutin. Moreover, the concentration of cell wall components (fibers) increased. Furthermore, it was shown that the use of untargeted analyses (such as Raman and ATR FT-IR, spectroscopic imaging, and MALDI-MSI) is useful for the investigation of the biochemical changes in plants.


Fertilizers , Plant Stems , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrum Analysis, Raman , Zea mays , Zea mays/chemistry , Zea mays/growth & development , Zea mays/drug effects , Plant Stems/chemistry , Plant Stems/growth & development , Plant Stems/drug effects , Fertilizers/analysis , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Phenols/analysis
3.
Micron ; 179: 103608, 2024 04.
Article En | MEDLINE | ID: mdl-38354449

Research on the structure and chemical composition of dental tissues allows for the optimisation of materials used in the treatment and care of teeth. Understanding pathological processes occurring in dental tissues and their reactions to various substances, including dental materials, are crucial for the development of new dental technologies. The aim of the study was to check the similarities in the chemical and morphological structure of enamel and dentine powders in various groups of permanent teeth, as well as differential chemical analysis for both grinded tissues tested. The extracted non-carious and non-pathological human permanent teeth were divided into four groups: incisors, canines, premolars and molars. Each tooth was sectioned to thick slices. Enamel and dentine were mechanically separated and ground in an agate mortar and pestle. FT-Raman and FTIR spectroscopy methods were used for the analysis of biological tissues. SEM method was applied to visualise hard dental tissues structures present on the surface and within the particles. The morphological structures were the same within the analysed tissues and did not depend on the analysed group of teeth. A comparison of the mineral-to-organic ratios of enamel and dentine in each tooth group showed that the bands related to PO43- were clearly higher in content for enamel than for dentine. Higher absorbance measured at the region of 2800-3700 cm-1 and at 1500-1800 cm-1 for dentine as compared to enamel samples were indicative of a higher content of organic structures. The highest contribution of phosphates was in canine enamel samples.The studies showed that the carbonate-to-phosphate ratio was higher for dentine (0.20 - 0.48) compared to the values obtained for enamel (0.13 - 0.22), however, minor differences were found in each group of enamel or dentine samples. The lack of significant differences between the enamel and dentine powders of incisors, canines, premolars and molars may prove that each extracted tooth, regardless of the tooth group, is an excellent substrate for their substitution.


Dentin , Molar , Humans , Dentin/chemistry , Dental Enamel
4.
Food Chem ; 429: 136996, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37506661

The properties of bacterial cellulose (BC)-based films produced by in situ biosynthesis with various polysaccharides (water-soluble pectin, arabinan, rhamnogalacturonan I, arabinoxylan, xyloglucan, glucomannan) were investigated. The addition of the polysaccharides to the bacterial growth environment changed the composition of the films by incorporating characteristic monosaccharides. BC-based films contained up to 26.7 % of non-cellulosic polysaccharides. The applied modification had a clear impact on water sorption and caused a decrease in the thermal stability of most BC films, which was connected with the depletion of geometrical dimensions of cellulose nanofibers observed with AFM. The FT-IR and Raman spectra demonstrated a decrease in % Iα of cellulose films, most notably for xyloglucan and glucomannan, as well as a change in their degree of crystallinity and the length of cellulose chains. The addition of xyloglucan had the most pronounced effect on film hardening; the other additives had a similar but lesser effect.


Cellulose , Polysaccharides , Spectroscopy, Fourier Transform Infrared , Pectins
5.
Molecules ; 27(21)2022 Oct 22.
Article En | MEDLINE | ID: mdl-36363977

In the present study, the potential of lead and cadmium removal by the extracellular polymeric substances (EPS) produced from Parachlorella kessleri and Chlorella vulgaris were investigated. Carbohydrates were the dominant components of EPS from both analyzed species. The contents of reducing sugars, uronic acids, and amino acids were higher in EPS synthesized by C. vulgaris than in EPS from P. kessleri. The analysis of the monosaccharide composition showed the presence of rhamnose, mannose and galactose in the EPS obtained from both species. The ICP-OES (inductively coupled plasma optical emission spectrometry) analyses demonstrated that C. vulgaris EPS showed higher sorption capacity in comparison to P. kessleri EPS. The sorption capacity of C. vulgaris EPS increased with the increase in the amount of metal ions. P. kessleri EPS had a maximum sorption capacity in the presence of 100 mg/L of metal ions. The FTIR analysis demonstrated that the carboxyl, hydroxyl, and carbonyl groups of EPS play a key role in the interactions with metal ions. The present study showed C. vulgaris EPS can be used as a biosorbent in bioremediation processes due to its biochemical composition, the presence of significant amounts of negatively charged uronic acids, and higher sorption capacity.


Chlorella vulgaris , Extracellular Polymeric Substance Matrix , Extracellular Polymeric Substance Matrix/chemistry , Cadmium/chemistry , Chlorella vulgaris/metabolism , Metals/analysis , Ions/analysis , Uronic Acids/metabolism
6.
Food Chem ; 393: 133430, 2022 Nov 01.
Article En | MEDLINE | ID: mdl-35696953

Flavonoids are secondary metabolites commonly found in plants. They are known for their antioxidant properties, are part of the defense mechanisms of plants and are responsible for the pigmentation of fruit and flowers petals. Consumption foods rich in flavonoids in the daily diet brings a number of pro-health benefits - for example blood pressure regulation, delaying the aging process or anti-cancer effect. These compounds in synthetic or natural form are also used in pharmacy. The profile of flavonoid compounds can be quickly, accurately and easy determine in the test sample by using the infrared and Raman spectroscopy. Those methods are successfully used in the food and pharmaceutical industries. Spectroscopy methods allow us to determine the chemical structure of these compounds. This review describes and compares differences between the spectroscopic spectra of individual compounds with the chemical structure for the flavonoids subgroups: flavones, isoflavones, flavanones, flavonols and anthocyanins.


Flavonoids , Spectrum Analysis, Raman , Anthocyanins , Antioxidants/chemistry , Flavonoids/chemistry , Spectroscopy, Fourier Transform Infrared
7.
Molecules ; 27(9)2022 Apr 19.
Article En | MEDLINE | ID: mdl-35565974

The goal of this work is to evaluate the hop stems, a byproduct of hop cones production, as a potential source of cellulose. Hop stems contain up to 29% of cellulose. The cellulose isolation was conducted through the thermochemical treatment. After high-speed blending, the cellulose was characterized by 67% of crystallinity degree obtained from X-ray diffraction and median diameter of 6.7 nm obtained from atomic force microscopy imaging. The high-intensity ultrasonication (HIUS) was applied to reach further disintegration of cellulose fibers. The longer HIUS treatment resulted in decrease in crystallinity degree even up to 60% and decrease in the fiber diameter up to 4 nm. The Fourier transform infrared spectroscopy (FTIR) spectra showed that HIUS treatment led to changes in intermolecular hydrogen bonds. The stability of cellulose dispersions versus length of HIUS treatment was monitored over 14 days with back dynamic light scattering and laser Doppler electrophoresis methods. Obtained results are evidence that the hop stems are a potential source of cellulose and that it is possible to obtain stable dispersions after HIUS treatment. This was the first time that the properties of hop cellulose have been described so extensively and in detail after the use of HIUS treatment.


Cellulose , Cellulose/chemistry , Hydrogen Bonding , Microscopy, Atomic Force , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
8.
Molecules ; 27(10)2022 May 11.
Article En | MEDLINE | ID: mdl-35630570

Although the health benefits of cornflower extracts are known, their application in food production has not been widely investigated. This study assessed microencapsulated red powders (RP) prepared from the aqueous extract of blue cornflower petals. Microencapsulation was performed by freeze-drying using various stabilizers, such as maltodextrin, guar gum, and lecithin. The microencapsulated RP were characterized by spectral (FT-IR and FT-Raman), mineral, structural, and antioxidant analyses. The FT-IR and FT-Raman band related to guar gum, lecithin, and maltodextrin dominated over the band characteristic of anthocyanins present in the cornflower petal powders. The main difference observed in the FT-Raman spectra was attributed to a shift of bands which is reflection of appearance of flavium cation forms of anthocyanins. The microencapsulated RP had total phenolic content of 21.6-23.4 mg GAE/g DW and total flavonoid content of 5.0-5.23 mg QE/g. The ABTS radical scavenging activity of the tested powders ranged from 13.8 to 20.2 EC50 mg DW/mL. The reducing antioxidant power (RED) of the powders was estimated at between 31.0 and 38.7 EC50 mg DW/mL, and OH• scavenging activity ranged from 1.9 to 2.6 EC50 mg DW/mL. Microencapsulated cornflower RP can be valuable additives to food such as sweets, jellies, puddings, drinks, or dietary supplements.


Anthocyanins , Antioxidants , Anthocyanins/chemistry , Antioxidants/chemistry , Lecithins , Powders , Spectroscopy, Fourier Transform Infrared
9.
Food Chem ; 389: 133109, 2022 Sep 30.
Article En | MEDLINE | ID: mdl-35504071

Effect of overmixing process and structure of selected phenolic acids belonging to hydroxycinnamic and hydroxybenzoic group on the structure of gluten network were analysed with application of FT-Raman Spectroscopy. Modification of gluten by acids resulted in formation of aggregates and unordered structures at the expense of protein stabilizing structures (e.g. ß-sheets or ß-turns). Supplementation with most of the acids caused reduction in the amount of disulphide bonds in the most stable conformation (g-g-g). Changes in the molecular organization of gluten proteins depended on the chemical structure of particular acids. The presence of bands assigned to aggregates was connected with the number of OH groups present at the aromatic ring of the acids. Acids belonging to hydroxycinnamic group did not incorporate or incorporate only partially into gluten network by formation of covalent or hydrogen bonds. Spectrophotometric analysis showed that hydroxycinnamic acids can interact stronger with gluten proteins compared to hydroxybenzoic acids.


Glutens , Triticum , Glutens/chemistry , Hydroxybenzoates , Protein Conformation, beta-Strand , Spectrum Analysis, Raman/methods , Triticum/chemistry
10.
J Sci Food Agric ; 102(13): 5965-5973, 2022 Oct.
Article En | MEDLINE | ID: mdl-35445406

BACKGROUND: Okra pods contain heat-sensitive substances, such as phenolic compounds and other phytochemicals that can be degraded when okra pods are subjected to heat treatment. The understanding of the impact of high humidity hot air impingement blanching (HHAIB) on the changes in physicochemical properties of polysaccharides and phytochemicals of okra pods is of great importance because over-blanching may result in cell membrane disruption and changes in biologically active compounds under prolonged exposure to the thermal treatment. Therefore, the present study aimed to investigate the effect of HHAIB on the changes in physicochemical properties of pectins and phytochemicals extracted from okra pods. RESULTS: Both the HHAIB time and method of extraction influenced their physicochemical characteristics and biological activity. Pectin fractions subjected to HHAIB were composed of polygalacturonic acid, rhamnogalacturonan, glucomannan, galactan, mannose, arabinose, rhamnose, calcium pectate and arabinogalactan. The contents of total phenolics, total flavonoids and antioxidant activity of extracts mostly increased during HHAIB (i.e. up to 19.0%, 13.2% and 35.3%, respectively). However, HHAIB reduced the chlorophyll-a (up to 55.7%) and lycopene (up to 52.6%) contents of okra pods. CONCLUSION: The acquired knowledge may be useful for better understanding and optimization of technologies based on HHAIB treatment. The HHAIB treated okra can be a promising natural alternative in different applications, including its use as a replacement of some ingredients in food or non-food systems as a result of richness in polysaccharides and polyphenols, as well as high antioxidant properties. © 2022 Society of Chemical Industry.


Abelmoschus , Abelmoschus/chemistry , Antioxidants/chemistry , Cell Wall/metabolism , Hot Temperature , Humidity , Phytochemicals/analysis , Polysaccharides/chemistry
11.
Food Chem ; 373(Pt B): 131487, 2022 Mar 30.
Article En | MEDLINE | ID: mdl-34741970

Polyphenols include flavonoids, phenolic acids, tannins and lignans which are known to have antioxidant, UV protection and antimicrobial properties. Among them the most commonly investigated are flavonoids and phenolic acids, which, due to their plant origin, may interact with the plant cell wall (PCW) components, specifically with its polysaccharides. Knowledge concerning the nature of the interactions between these components may be used in the production of functional food or in the development of food packaging materials with additional properties. The content of polyphenols in such products is responsible for their colour and taste, and may also act as a natural preservative. On the other hand, the PCW components may have protective role of polyphenols which has impact on their release in the human digestive system. Therefore, this review is an attempt to summarize the current state of knowledge that emerged after 2017 concerning the interaction of PCW components with polyphenols, with a particular focus on hemicellulose and pectin.


Polyphenols , Polysaccharides , Adsorption , Antioxidants , Cell Wall , Flavonoids , Humans
12.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article En | MEDLINE | ID: mdl-34884793

Multimodal spectroscopic imaging methods such as Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI MSI), Fourier Transform Infrared spectroscopy (FT-IR) and Raman spectroscopy were used to monitor the changes in distribution and to determine semi quantitatively selected metabolites involved in nitrogen fixation in pea root nodules. These approaches were used to evaluate the effectiveness of nitrogen fixation by pea plants treated with biofertilizer preparations containing Nod factors. To assess the effectiveness of biofertilizer, the fresh and dry masses of plants were determined. The biofertilizer was shown to be effective in enhancing the growth of the pea plants. In case of metabolic changes, the biofertilizer caused a change in the apparent distribution of the leghaemoglobin from the edges of the nodule to its centre (the active zone of nodule). Moreover, the enhanced nitrogen fixation and presumably the accelerated maturation form of the nodules were observed with the use of a biofertilizer.


Nitrogen Fixation/physiology , Pisum sativum/metabolism , Rhizobium leguminosarum/metabolism , Root Nodules, Plant/metabolism , Fertilizers/microbiology , Leghemoglobin/metabolism , Pisum sativum/growth & development , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
13.
Carbohydr Polym ; 273: 118598, 2021 Dec 01.
Article En | MEDLINE | ID: mdl-34560998

The self-assembly and gelation of low-methoxyl diluted alkali-soluble pectin (LM DASP) from pear fruit (Pyrus communis L. cv. Conference) was studied in water and salt solutions (NaCl and CaCl2, constant ionic strength) without pH adjustment at 20 °C. The samples at different LM DASP concentrations were characterized using rheological tests, Fourier-transform infrared spectroscopy, dual-angle dynamic light scattering and atomic force microscopy. LM DASP from pear fruit (Pyrus communis L.) showed gelling ability. The indices (aggregation index and shape factor) based on light scattering may be useful for the characterization of structural changes in polysaccharide suspension, particularly for the determination of a gel point. The results obtained may be important for the food, cosmetic and pharmaceutical industries where pectin is used as a texturizer, an encapsulating agent, a carrier of bioactive substances or a gelling agent.


Gels/chemistry , Pectins/chemistry , Pyrus/chemistry , Calcium Chloride/chemistry , Rheology , Sodium Chloride/chemistry , Solutions/chemistry , Water/chemistry
14.
Front Plant Sci ; 12: 711838, 2021.
Article En | MEDLINE | ID: mdl-34394168

Gall formation on the belowground parts of plants infected with Plasmodiophora brassicae is the result of extensive host cellular reprogramming. The development of these structures is a consequence of increased cell proliferation followed by massive enlargement of cells colonized with the pathogen. Drastic changes in cellular growth patterns create local deformities in the roots and hypocotyl giving rise to mechanical tensions within the tissue of these organs. Host cell wall extensibility and recomposition accompany the growth of the gall and influence pathogen spread and also pathogen life cycle progression. Demethylation of pectin within the extracellular matrix may play an important role in P. brassicae-driven hypertrophy of host underground organs. Through proteomic analysis of the cell wall, we identified proteins accumulating in the galls developing on the underground parts of Arabidopsis thaliana plants infected with P. brassicae. One of the key proteins identified was the pectin methylesterase (PME18); we further characterized its expression and conducted functional and anatomic studies in the knockout mutant and used Raman spectroscopy to study the status of pectin in P. brassicae-infected galls. We found that late stages of gall formation are accompanied with increased levels of PME18. We have also shown that the massive enlargement of cells colonized with P. brassicae coincides with decreases in pectin methylation. In pme18-2 knockout mutants, P. brassicae could still induce demethylation; however, the galls in this line were smaller and cellular expansion was less pronounced. Alteration in pectin demethylation in the host resulted in changes in pathogen distribution and slowed down disease progression. To conclude, P. brassicae-driven host organ hypertrophy observed during clubroot disease is accompanied by pectin demethylation in the extracellular matrix. The pathogen hijacks endogenous host mechanisms involved in cell wall loosening to create an optimal cellular environment for completion of its life cycle and eventual release of resting spores facilitated by degradation of demethylated pectin polymers.

15.
Molecules ; 26(16)2021 Aug 17.
Article En | MEDLINE | ID: mdl-34443574

Natural extracts are a rich source of biomolecules that are useful not only as antioxidant drugs or diet supplements but also as complex reagents for the biogenic synthesis of metallic nanoparticles. The natural product components can act as strong reducing and capping substrates guaranteeing the stability of formed NPs. The current work demonstrates the suitability of extracts of Camellia sinensis, Ilex paraguariensis, Salvia officinalis, Tilia cordata, Levisticum officinale, Aegopodium podagraria, Urtica dioica, Capsicum baccatum, Viscum album, and marine algae Porphyra Yezoensis for green synthesis of AgNPs. The antioxidant power of methanolic extracts was estimated at the beginning according to their free radical scavenging activity by the DPPH method and reducing power activity by CUPRAC and SNPAC (silver nanoparticle antioxidant capacity) assays. The results obtained by the CUPRAC and SNAPC methods exhibited excellent agreement (R2~0.9). The synthesized AgNPs were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), dynamic light scattering (DLS) particle size, and zeta potential. The UV-vis absorption spectra showed a peak at 423 nm confirming the presence of AgNPs. The shapes of extract-mediated AgNPs were mainly spherical, spheroid, rod-shaped, agglomerated crystalline structures. The NPs exhibited a high negative zeta potential value in the range from -49.8 mV to -56.1 mV, proving the existence of electrostatic stabilization. FTIR measurements indicated peaks corresponding to different functional groups such as carboxylic acids, alcohol, phenol, esters, ethers, aldehydes, alkanes, and proteins, which were involved in the synthesis and stabilization of AgNPs. Among the examined extracts, green tea showed the highest activity in all antioxidant tests and enabled the synthesis of the smallest nanoparticles, namely 62.51, 61.19, and 53.55 nm, depending on storage times of 30 min, 24 h, and 72 h, respectively. In turn, the Capsicum baccatum extract was distinguished by the lowest zeta potential, decreasing with storage time from -66.0 up to -88.6 mM.


Antioxidants/chemical synthesis , Antioxidants/pharmacology , Metal Nanoparticles , Plant Extracts/chemistry , Silver/chemistry , Silver/pharmacology , Antioxidants/chemistry , Biphenyl Compounds/chemistry , Chemistry Techniques, Synthetic , Green Chemistry Technology , Picrates/chemistry
16.
Materials (Basel) ; 14(8)2021 Apr 09.
Article En | MEDLINE | ID: mdl-33918857

In the present work, extraction with a solvent (cold acetone) was used to extract the assimilation pigments from spinach leaves. Then, the sorption capacity of selected plastics granules (polyvinyl chloride-PVC, polypropylene-PP, polyethylene-PE of different densities) was tested for the selective isolation of chlorophylls. Quantification of chlorophylls by HPLC (Zorbax Eclipse XDB-C18 column, the mobile phase: Acetonitrile/methanol/ethyl acetate 6:2:2, v/v) was based on chlorophyll-a content as the most common chlorophyll. The performed experiments prove that PVC containing electronegative chlorine exhibits favorable interactions toward chlorophyll by creating stable molecular complexes. The Fourier Transform Raman Spectroscopy (FT-Raman) and the molecular modeling were used to elucidate the structure of the created complexes. The optimal extraction requirements, the mass of sorbent, water-acetone ratio, time, and the composition of the elution solvent were all established. The optimized extraction conditions ensured a maximum extraction yield of chlorophylls of 98%. The chlorophyll-rich sorbent was re-extracted by acetone, leading to the recovery of 91% of chlorophylls in one step, adding the possibility of its re-use. The proposed effective and ecological method of obtaining the green dye from plants is cheap, simple, and efficient, avoiding organic solvents, utilizing the most widely used synthetic polymers in the world, being products difficult for utilization. The possibility to remove chosen fungicides cyprodinil, chlorothalonil, and thiabendazone from plant extract by PVC was also examined. The described method proposes a new application of synthetic polymers, which meets the criteria of sustainable green chemistry, simultaneously reaching the growing demand for pure natural compounds in the pharmaceutical and food industries.

17.
Food Chem ; 346: 128889, 2021 Jun 01.
Article En | MEDLINE | ID: mdl-33388668

The present study aimed to prepare blue colored powders from an aqueous extract of cornflower petals. Low temperature (4 °C) aqueous extraction (1:20) and microencapsulation by freeze-drying were performed. A mixture of stabilizers (maltodextrin, guar gum, and lecithin) in a proportion of 10% to the amount of extract was used. The results indicated that the addition of 2% and 4% guar gum to maltodextrin (8-6%) significantly increased the efficiency of the process, but 4% guar gum caused the formation of amorphous particles; therefore, 2% guar gum addition was found to be the most optimal. The FT-IR and FT-Raman band characteristics for guar gum, lecithin, and maltodextrin dominated over those for anthocyanins contained in the powders made from cornflower petals. The blue powders had total phenolic content of 19.5-26.6 mg GAE/g DW. The antioxidant activity of the prepared powders measured by ABTS, CHEL, OH, and RED was high.


Antioxidants/chemistry , Centaurea/chemistry , Minerals/chemistry , Plant Extracts/chemistry , Powders/chemistry , Spectroscopy, Fourier Transform Infrared , Centaurea/metabolism , Color , Galactans/chemistry , Mannans/chemistry , Phenols/chemistry , Plant Gums/chemistry , Polysaccharides/chemistry , Water/chemistry
18.
Carbohydr Polym ; 245: 116513, 2020 Oct 01.
Article En | MEDLINE | ID: mdl-32718623

The silver nanoparticles (AgNPs) can exhibit different optical properties depending on their size and shape as a result of synthesis method and the stabilizer used. In this research the synthesis of AgNPs in the presence of nanocellulose obtained from carrot pomace was investigated. The influence of silver nitrate concentration, temperature and mechanical agitation on size and shape of AgNPs was studied. The mixing of reagents during synthesis, regardless temperature, led to obtain AgNPs of various sizes and shapes. It was confirmed by different colors of samples with absorbance maximum from 334 to 779 nm, the transmission electron microscopy images and dynamic light scattering results. In unmixed samples only spherical nanoparticles with absorbance maximum at 408 nm were observed. Obtained results have demonstrated that mechanical agitation and an appropriate silver nitrate concentration combined with stabilizing effect of nanocellulose allow to obtain AgNPs in different shapes and sizes.


Cellulose/chemistry , Daucus carota/chemistry , Excipients/chemistry , Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Silver Nitrate/chemistry , Chemistry Techniques, Synthetic/methods , Dynamic Light Scattering , Microscopy, Electron, Transmission , Particle Size , Temperature
19.
Polymers (Basel) ; 12(4)2020 Apr 04.
Article En | MEDLINE | ID: mdl-32260337

In this research, it was proposed to use carrot cellulose nanofibrils (CCNF) isolated from carrot pomace modified with silver nanoparticles (AgNPs) as a filler of polylactic acid (PLA) composites matrix. The new procedure was based on two steps: first, the preparation of nanocellulose modified with metal nanoparticles, and then the combination with PLA. Two concentrations-0.25 mM and 2 mM-of AgNO3 were used to modify CCNF. Then, PLA was mixed with the filler (CCNF/AgNPs) in two proportions 99:1 and 96:4. The influence of CCNF/AgNPs on mechanical, hydrophilic, thermal, and antibacterial properties of obtained nanocomposites was evaluated. The greatest improvement of mechanical properties was observed for composite containing CCNF with 2 mM of AgNPs, which obtained the lowest Young modulus and highest strain at break. The degradation temperature was lower for PLA with CCNF/AgNPs, but crystallization temperature wasn't influenced. The addition of CCNF/AgNPs also increased hydrophilicity. The transmission rates of oxygen, nitrogen, and carbon dioxide also increased after the addition of CCNF/AgNPs to PLA. The antibacterial function against Escherichia coli and Bacillus cereus was obtained after the addition of AgNPs but only at the contact surface with the material made, suggesting the lack of migration of nanoparticles from the composite.

20.
Polymers (Basel) ; 11(12)2019 Dec 13.
Article En | MEDLINE | ID: mdl-31847175

Nanocellulose, being a material with nanodimensions, is characterized by high tensile strength, high modulus of elasticity, low thermal expansion, and relatively low density, as well as exhibiting very good electrical conductivity properties. The paper presents the results of research on cement mortars with the addition of nanocrystals cellulose, applied in three different amounts (0.5%, 1.0%, and 1.5%) by weight of cement, including: physical and mechanical properties, frost resistance and resistance against the detrimental effect of salt, and microstructure examination (SEM). Along with an increase in amount of admixture, the weight loss following frost resistance and salt crystallization tests is reduced. Studies have shown that the addition of nanocrystalline cellulose improves the compressive and flexural strength by 27.6% and 10.9%, respectively. After 50 freezing and thawing (F-T) cycles for the mortars with 1.5% nanocellulose admixture, an improvement in frost resistance by 98% was observed. In turn, the sulfate crystallization tests indicated a 35-fold decrease in weight loss following 1.5% nanopolymer addition to the mortar.

...