Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
PeerJ ; 11: e15731, 2023.
Article En | MEDLINE | ID: mdl-37601267

Marine biofouling is a natural process by which many organisms colonize and grow in submerged structures, causing serious economic consequences for the maritime industry. Geniculate calcareous algae (GCA; Corallinales, Rhodophyta) produce bioactive secondary metabolites and are a promise for new antifouling compounds. Here, we investigated the antifouling activity of four GCA species-Amphiroa beauvoisii, Jania sagittata (formerly Cheilosporum sagittatum), Jania crassa, and Jania prolifera (formerly Amphiroa flabellata)-from the Brazilian coast against macro- and microorganisms. Simultaneously, metabolomic tools were applied to assess the chemical profiles of these seaweeds using gas chromatography coupled to mass spectrometry (GC-MS). Data analysis by principal component and molecular networking analyses used the global natural products social molecular networking platform (GNPS). Our results showed that all extracts were active against different strains of marine bacteria and that the J. sagittata (JsSI) extract showed the highest percentage of bacterial inhibition. The J. sagittata (JsSI) extract was the most active against the mussel Perna perna, showing 100% byssus inhibition. Regarding toxicity, only the J. crassa (JcP) extract showed a 20% mortality rate. The chemical profiles of the evaluated GCA extracts differed qualitatively and quantitatively. Yet, the steroid (3ß)-cholest-5-en-3-ol was the major compound commonly identified in all extracts, with the exception of J. sagittata (JsSI). Moreover, we observed intra- and interspecific chemical variabilities among GCA extracts for the different populations, which could explain their antifouling activity variability. This study contributed new information about the chemical compounds produced by this group of seaweeds and showed its antifouling potential. These GCA species may be the subject of future studies to obtain new bioactive compounds with biotechnological potential in maritime areas.


Biofouling , Rhodophyta , Seaweed , Animals , Brazil , Biofouling/prevention & control , Plant Extracts/pharmacology
2.
Sci Total Environ ; 892: 164818, 2023 Sep 20.
Article En | MEDLINE | ID: mdl-37315600

Global marine conservation remains fractured by an imbalance in research efforts and policy actions, limiting progression towards sustainability. Rhodolith beds represent a prime example, as they have ecological importance on a global scale, provide a wealth of ecosystem functions and services, including biodiversity provision and potential climate change mitigation, but remain disproportionately understudied, compared to other coastal ecosystems (tropical coral reefs, kelp forests, mangroves, seagrasses). Although rhodolith beds have gained some recognition, as important and sensitive habitats at national/regional levels during the last decade, there is still a notable lack of information and, consequently, specific conservation efforts. We argue that the lack of information about these habitats, and the significant ecosystem services they provide, is hindering the development of effective conservation measures and limiting wider marine conservation success. This is becoming a pressing issue, considering the multiple severe pressures and threats these habitats are exposed to (e.g., pollution, fishing activities, climate change), which may lead to an erosion of their ecological function and ecosystem services. By synthesizing the current knowledge, we provide arguments to highlight the importance and urgency of levelling-up research efforts focused on rhodolith beds, combating rhodolith bed degradation and avoiding the loss of associated biodiversity, thus ensuring the sustainability of future conservation programs.


Biodiversity , Ecosystem , Coral Reefs , Environmental Pollution , Forests , Conservation of Natural Resources
3.
Mar Pollut Bull ; 95(1): 81-8, 2015 Jun 15.
Article En | MEDLINE | ID: mdl-25935812

The impact of sediment coverage on two rhodolith-forming calcareous algae species collected at 100m water depth off the coast of Brazil was studied in an experimental flow-through system. Natural sediment mimicking drill cuttings with respect to size distribution was used. Sediment coverage and photosynthetic efficiency (maximum quantum yield of charge separation in photosystem II, ϕPSIImax) were measured as functions of light intensity, flow rate and added amount of sediment once a week for nine weeks. Statistical experimental design and multivariate data analysis provided statistically significant regression models which subsequently were used to establish exposure-response relationship for photosynthetic efficiency as function of sediment coverage. For example, at 70% sediment coverage the photosynthetic efficiency was reduced 50% after 1-2weeks of exposure, most likely due to reduced gas exchange. The exposure-response relationship can be used to establish threshold levels and impact categories for environmental monitoring.


Environmental Monitoring , Geologic Sediments/analysis , Rhodophyta/physiology , Water Pollutants/analysis , Brazil , Light , Models, Theoretical , Photosynthesis/drug effects , Photosystem II Protein Complex
4.
Environ Toxicol Chem ; 34(7): 1572-7, 2015 Jul.
Article En | MEDLINE | ID: mdl-25689779

Discharge of drill cuttings into the ocean during drilling of offshore oil wells can impact benthic communities through an increase in the concentrations of suspended particles in the water column and sedimentation of particles on the seafloor around the drilling installation. The present study assessed effects of water-based drill cuttings, barite, bentonite, and natural sediments on shallow- and deep-water calcareous algae in short-term (30 d) and long-term (90 d) experiments, using 2 species from Peregrino's oil field at Campos Basin, Brazil: Mesophyllum engelhartii and Lithothamnion sp. The results were compared with the shallow-water species Lithothamnion crispatum. Smothering and burial exposures were simulated. Oxygen production and fluorescence readings were recorded. Although less productive, M. engelhartii was as sensitive to stress as Lithothamnion sp. Mesophyllum engelhartii was sensitive to smothering by drill cuttings, barite, and bentonite after 60 d of exposure and was similarly affected by natural sediments after 90 d. These results indicate that smothering by sediments caused physical effects that might be attributable to partial light attenuation and partial restriction on gas exchange but did not kill the calcareous algae in the long term. However, 1-mo burial by either natural sediments or drill cuttings was sufficient after 60 d for both species to reduce oxygen production, and the algae were completely dead under both sources of sediments.


Geologic Sediments/chemistry , Oil and Gas Fields/chemistry , Rhodophyta/growth & development , Environmental Exposure , Rhodophyta/drug effects , Time Factors , Toxicity Tests , Water Pollutants, Chemical/toxicity
...