Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 86(7): 3453-60, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24575712

RESUMEN

ICP spectrometry (ICPMS, ICPOES) are classical techniques for the determination of solubilized or suspended elements. Unfortunately, their relevance for nanoparticles at low concentration (below 10 ppm) is rarely called into question, even if literature reports are not always coherent. This work is a systematic study based on the measurement of TiO2 nanoparticle suspensions, as a model of quasi-insoluble material, by plasma spectrometry. It studies both sample treatment and measurement in the 10 ppb to 30 ppm concentration range. Realized on a set of four engineered nanoparticles suspensions at low concentration, it shows the existence of three different regimes of stability that affect concentration measurement. Above a C(S) stability concentration value, suspensions are stable in time; below a low-concentration C(E) value, the signal loss is at a maximum, and a final partition is reached between the container walls and the suspension. Between these two regimes, the suspension aging varies with concentration. C(E) and C(S) depend on nanoparticle characteristics and the suspension medium, whereas the evolution kinetic is volume-dependent. Because TiO2 nanoparticles are present in the environment at concentrationd below C(S), it is then necessary to find a way to rehomogenize the suspension between sampling and analyzing. Soft sonication, minimizing the sample temperature, and trapping of free radicals is proposed and evaluated. Homogenization is traced by the addition of an internal standard before storage. The procedure is applied to a real sample, Seine River water. The amount of total titanium found, 48.7 ppb, is in good agreement with the result of the reference method.

2.
Toxicol Lett ; 188(1): 26-32, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19433266

RESUMEN

Cobalt is known to be toxic at high concentration, to induce contact dermatosis, and occupational radiation skin damage because of its use in nuclear industry. We investigated the intracellular distribution of cobalt in HaCaT human keratinocytes as a model of skin cells, and its interaction with endogenous trace elements. Direct micro-chemical imaging based on ion beam techniques was applied to determine the quantitative distribution of cobalt in HaCaT cells. In addition, synchrotron radiation X-ray fluorescence microanalysis in tomography mode was performed, for the first time on a single cell, to determine the 3D intracellular distribution of cobalt. Results obtained with these micro-chemical techniques were compared to a more classical method based on cellular fractionation followed by inductively coupled plasma atomic emission spectrometry (ICP-AES) measurements. Cobalt was found to accumulate in the cell nucleus and in perinuclear structures indicating the possible direct interaction with genomic DNA, and nuclear proteins. The perinuclear accumulation in the cytosol suggests that cobalt could be stored in the endoplasmic reticulum or the Golgi apparatus. The multi-elemental analysis revealed that cobalt exposure significantly decreased magnesium and zinc content, with a likely competition of cobalt for magnesium and zinc binding sites in proteins. Overall, these data suggest a multiform toxicity of cobalt related to interactions with genomic DNA and nuclear proteins, and to the alteration of zinc and magnesium homeostasis.


Asunto(s)
Núcleo Celular/metabolismo , Cobalto/metabolismo , Queratinocitos/metabolismo , Magnesio/metabolismo , Zinc/metabolismo , Transporte Activo de Núcleo Celular , Línea Celular , Cobalto/toxicidad , Citosol/metabolismo , Microanálisis por Sonda Electrónica , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Homeostasis , Humanos , Imagenología Tridimensional , Espectrometría por Rayos X , Espectrofotometría Atómica , Sincrotrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA