Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 376: 128839, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36906240

RESUMEN

The study compares the potential to produce volatile fatty acids (VFA) from sewage sludge, both raw and thermally pre-treated in two modes of operation. In batch mode, raw sludge at pH 8 obtained the highest maximum VFA yield (0.41 g COD-VFA/g CODfed) whereas pre-treated sludge achieved a lower value (0.27 g COD-VFA/g CODfed). The operation of 5-L continuous reactors showed that thermal hydrolysis pre-treatment (THP) did not have any significant influence on VFA yields, averaging 15.1 % g COD-VFA/g COD with raw sludge and 16.6 % g COD-VFA/g COD with pre-treated one. Microbial community analysis showed that phylum Firmicutes was predominant in both reactors and that the enzymatic profiles involved in VFA production were very similar regardless of the substrate fed.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Fermentación , Hidrólisis , Ácidos Grasos Volátiles , Concentración de Iones de Hidrógeno , Reactores Biológicos
2.
Sci Total Environ ; 716: 137079, 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32044492

RESUMEN

Novel wastewater treatment plants (WWTPs) are expected to be less energetically demanding than conventional ones. However, scarce information is available about the fate of organic micropollutants (OMPs) in these novel configurations. Therefore, the objective of this work is to assess the fate of OMPs in three novel WWTP configurations by using a plant-wide simulation that integrates multiple units. The difference among the three configurations is the organic carbon preconcentration technology: chemically enhanced primary treatment (CEPT), high-rate activated sludge (HRAS) combined or not with a rotating belt filter (RBF); followed by a partial-nitritation (PN-AMX) unit. The simulation results show that the three selected novel configurations lead mainly to comparable OMPs removal efficiencies from wastewater, which were similar or lower, depending on the OMP, than those obtained in conventional WWTPs. However, the presence of hydrophobic OMPs in the digested sludge noticeably differs among the three configurations. Whereas the configuration based on sole HRAS to recover organic carbon leads to a lower presence of OMPs in digested sludge than the conventional WWTP, in the other two novel configurations this presence is noticeable higher. In conclusion, novel WWTP configurations do not improve the OMPs elimination from wastewater achieved in conventional ones, but the HRAS-based WWTP configuration leads to the lowest presence in digested sludge so it becomes the most efficient alternative.

3.
Water Res ; 169: 115258, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31710915

RESUMEN

Novel wastewater treatment plants (WWTPs) are designed to be more energy efficient than conventional plants. One approach to becoming more energy efficient is the pre-concentration of organic carbon through chemically enhanced primary treatment (CEPT) or high-rate activated sludge (HRAS). This study compares these approaches in terms of energy demand, operational costs, organic micropollutants (OMP), and virus removal efficiency. A CEPT pilot-scale plant was operated at a hydraulic retention time (HRT) of 30 min, and a lab-scale HRAS reactor was operated at an HRT of 2 h and a solid retention time (SRT) of 1 d in continuous mode. A minimum dose of 150 mg/L ferric chloride (FeCl3) was required to achieve a threshold chemical oxygen demand (COD)-to-ammonium ratio below 2 g COD to 1 g of NH4+ -N (fulfilling the requirement for a partial nitritation-anammox reactor), reaching high phosphate (PO43-)-removal efficiency (>99%). A slightly lower COD recovery was attained in the HRAS reactor, due to the partial oxidation of the influent COD (15%). The lower PO43- removal efficiency achieved in the HRAS configuration (13%) was enhanced to a comparable value of that achieved in CEPT by the addition of 30 mg/L FeCl3 at the clarifier. The CEPT configuration was less energy-intensive (0.07 vs 0.13 kWh/m3 of wastewater) but had significantly higher operational costs than the HRAS-based configuration (6.0 vs 3.8 c€/m3 of wastewater). For OMPs with kbiol > 10 L/gVSS·d, considerably higher removal efficiencies were achieved in HRAS (80-90%) than in CEPT (4-55%). For the remaining OMPs, the biotransformation efficiencies were generally higher in HRAS than in CEPT but were below 55% in both configurations. Finally, CEPT was less efficient than HRAS for virus removal. HRAS followed by FeCl3 post-treatment appeared to be a more effective alternative than CEPT for COD pre-concentration in novel WWTPs.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Carbono , Eliminación de Residuos Líquidos
4.
Sci Total Environ ; 690: 534-542, 2019 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-31301494

RESUMEN

Pretreatment technologies prior to anaerobic digestion (AD) have been developed with the aim of enhancing biogas productivity and reducing the presence of pathogens in digested sludge. Among them, thermal hydrolysis (TH) appears as the most promising one. In wastewater treatment plants (WWTPs) sludge is the end point of many organic micropollutants (OMPs), which was proved to lead to important environmental and human risks since sludge is commonly used in agriculture. The objective of this work is to determine the fate OMPs in TH and subsequent AD. Sewage sludge was pretreated in a TH pilot plant at 170 °C for 20 min. Afterwards, two anaerobic digesters with a working volume of 14 L fed with fresh and pretreated sludge were operated in parallel in mesophilic conditions. TH proved to be an effective technology to partially or totally remove the dissolved fraction of OMPs as well as the fraction sorbed into those suspended solids that are solubilised after this pretreatment. However, it did not affect the OMPs sorbed concentration into solids that are not solubilised. Globally, the OMPs removal efficiency during TH appears to be linked to the solids solubilisation during this process. Afterwards, the OMPs biotransformation efficiency in AD of fresh and pretreated sludge was determined. Noticeable differences between the microbiome of both reactors was determined, but the anaerobic biotransformation was not substantially different for most of the OMPs. However, it affected musk fragrances, which presented considerably lower biotransformation efficiency in the reactor fed with pretreated sludge. Therefore, TH was proved effective in partially removing OMPs but not in enhancing their bioavailability and subsequent anaerobic biotransformation.


Asunto(s)
Eliminación de Residuos Líquidos/métodos , Contaminantes del Agua/análisis , Anaerobiosis , Biotransformación , Hidrólisis , Aguas del Alcantarillado , Aguas Residuales , Contaminantes del Agua/metabolismo
5.
Waste Manag ; 92: 30-38, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31160024

RESUMEN

Novel wastewater treatment plants (WWTPs) are aimed to be more energetically efficient than conventional ones. Their first step is a chemical oxygen demand (COD) preconcentration stage with different alternatives, such as rotating belt filters (RBF), chemically enhanced primary treatment (CEPT), high-rate activated sludge (HRAS), or combinations thereof, in which energy requirements are substantially reduced. The COD recovered as sludge allows a noticeable increase of biogas production in anaerobic digestion (AD). In conventional WWTPs, sludge anaerobic biodegradability can be significantly enhanced by applying sludge pretreatment methods, such as thermal hydrolysis (TH), before AD. However, considering that novel-sludges are more anaerobically biodegradable than conventional ones, the impact of TH on their methane production is expected to result significantly lower. In this study, an energetic and economic assessment of applying TH in novel WWTPs was performed. We found that TH is only justified to reduce operational costs as long as sludge TS concentration in the feeding to the TH unit is higher than 1-2%. The HRAS-based WWTP is the scenario that leads to the lowest treatment costs (below 1c €/ m3 wastewater if sludge is thickened over 10% of TS). However, the WWTP based on CEPT for COD preconcentration leads to the lowest electricity consumption (below 0.01 kWh/m3 of wastewater), but even in the most favourable conditions the energy autarky was not achievable. Results show that the main impact of TH is mainly due to sludge disposal savings (270,000-430,000 €/year for a 500,000 inhabitants WWTP) rather than the increase of energy production (achieves maximum savings of 35,000-60,000 €/year). Payback time is very dependent on the WWTP size, ranging from 15 to 30 years for a 100,000 inhabitants WWTP and from 2 to 4 years for a 1,000,000 inhabitants WWTP.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Anaerobiosis , Hidrólisis , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...