Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 329: 121698, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37088252

RESUMEN

Urban stormwater runoff has been suggested as one important land-based pathway of microplastics (MPs) entering the oceans, in which the abundance and characteristics of MPs may be influenced by urban land use types. However, little information has been reported regarding this, especially in the tropical monsoon region. This study first reports the MPs in urban stormwater runoffs in a tropical monsoon region that were collected from four typical urban land use types, including industrial, highways, commercial, and residential areas. The average MP particle count and mass concentration were measured as 4.7 ± 3.5 particles/L and 3.8 ± 2.9 mg/L, respectively. MP abundances showed clear urban land use gradients following the order of industrial > transportation > commercial > residential area. In terms of the seasonal variation in MP abundances, a slightly increasing particle count in the dry season was noted for the residential site. Source apportionment of MPs in stormwater runoffs was demonstrated based on the land use type, particle morphology, and chemical compositions. With the simple apportionment approach, approximately 85% of the MP sources were able to be identified in the industrial, transportation, and residential sites. However, the commercial site showed high variability in terms of the morphology and polymer type of MPs. Furthermore, significantly positive correlations between MP abundance and runoff turbidity, TSS, COD, and rainfall intensity were identified, while, no significant correlation was found between MP characteristics and selected water quality/meteorological parameters.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Plásticos , Contaminantes Químicos del Agua/análisis , Lluvia
2.
Sci Total Environ ; 824: 153888, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35182625

RESUMEN

Appropriate assessment on concerned soil contaminants spatially is of importance for decision-makers and stakeholders to make efficient mitigation countermeasures. In this study, we applied multiple geostatistical approaches to explore soil nutrient and metallic contaminant distributions in a large river watershed in Thailand, and to compare their performances in predicting spatial distribution patterns of the concerned soil contaminants under suitable application scenarios. The total carbon, nitrogen and phosphorous in surface soils over the whole watershed were measured with their maximum concentrations up to 131.47, 9.24, 5.33 g·kg-1, respectively, while the concentrations of eight metallic elements (Cu, Zn, Pb, Cd, Hg, As, Cr, and Ni) were 933.00, 6862.50, 373.00, 6.22, 1.15, 178.53, 761.11, and 372.44 mg·kg-1, respectively. It was found that the conditional interpolation approaches such as land use stratified inverse distance weighted and land use stratified original kriging provided better boundary details than original interpolations, with substantially reduced root mean square errors (up to 28% for nutrients and 54% for specific metals) and mean relative errors (up to 38% for nutrients and specific metals respectively) in predicting the spatial patterns of soil nutrients and several land use specific metals (Cu, Zn, Cd, and Pb). The global accuracies were equivalent or higher than those of geographically weighted regression. Nonetheless, the prediction accuracy for Cr, Ni, As, and Hg could not be improved using the land use stratified interpolation because their sources and pathways were not significantly correlated with land use types in the watershed, as reflected by the results of analysis of variance with post hoc test (p ≤ 0.05) and principal component analysis.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cadmio/análisis , China , Monitoreo del Ambiente/métodos , Plomo/análisis , Metales Pesados/análisis , Nutrientes/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis
3.
Chemosphere ; 285: 131549, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34710965

RESUMEN

Osmotic microbial fuel cell (OsMFC) integrating forward osmosis into microbial fuel cell (MFC) favors the merits of organic removal, bioenergy generation, and high-quality water extraction from wastewater. This study demonstrated an 18.7% power density enhancement over a conventional MFC due to the water-flux-facilitated proton advection and net positive charge (NPC)-flux-promoted countercurrent proton exchange. Among the three examined membrane cleaning methods, chemical cleaning using 0.2% NaClO was found to be especially effective in removing organic foulants composed of proteins and polysaccharides, resulting in a water flux recovery of up to 91.6% with minimal impact on average maximum power density and internal resistance. The effects of operating parameters including anode HRT and draw solution concentration were studied. Shortening HRT from 6.0 to 3.0 h increased power density by 78.0% due to a high organic loading rate and a slightly reduced polarization concentration. Increasing draw solution concentration from 0.2 to 1.0 M NaCl enhanced power density by approximately 2.7-fold due to enhanced proton advection. Water-flux-facilitated proton advection played a more important role in determining the electricity generation performance of OsMFC than the NPC-flux-promoted countercurrent proton exchange under varied operating conditions.


Asunto(s)
Fuentes de Energía Bioeléctrica , Electricidad , Electrodos , Ósmosis , Aguas Residuales
4.
Sci Total Environ ; 789: 147983, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34082213

RESUMEN

Climate change-induced floods in tropical urban areas have presented a serious global challenge because of failed conventional stormwater management practices. This research aims to develop a comprehensive methodological framework for flood damage estimation and mitigation, particularly in a tropical urban city. In this study, interdisciplinary fields were integrated through statistical downscaling, hydrologic-hydraulic modeling, and the development of flood damage curves. Relationships between tangible flood damage and flood-borne outbreak with flood depths were elucidated to predict future damage. Various flood mitigation strategies were evaluated. Herein, Hat Yai Municipality in Southern Thailand was selected as the study area. The flood simulation was conducted for 2010 and the highest flood damage sensitivity was exhibited by non-commercial buildings due to significant commercial stock damage, which was followed by that observed for detached houses. There was a strong linear relationship between the number of patients infected with leptospirosis and flood depth (R2 = 0.85). For climate change studies, flood maps for storms with 20-, 50-, and 100-year return periods under the A2/RCP8.5 scenario were generated using hydrological-hydraulic 1D/2D model; these maps were applied with the developed flood damage curves for damage estimation. It was found that reducing flood damage by implementing agroforestry and expanding the main bypass channel provides comparable damage reductions of -25.5% and - 27.5%, respectively, under the worst-case scenario of a 100-year return period in 2040-2059. Therefore, to deal with uncertain climate change situations, the incorporation of structural and non-structural measures is recommended. Such a combination when coupled with an eight-hour flood awareness time can result in a damage reduction of -59.9%. A flood warning system was in high demand by residents in the area; however, damage reduction from this measure alone was not high (approximately -17.0%) when compared to that obtained with other measures; consequently, additional measures were needed.


Asunto(s)
Cambio Climático , Inundaciones , Ciudades , Humanos , Hidrología , Tailandia
5.
J Environ Manage ; 278(Pt 1): 111521, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33120094

RESUMEN

The spatial distribution of seven metals (Pb, Hg, Cd, Cr, Ni, Cu, and Zn) and As in the surface sediments from three major tributaries of a tropical urbanizing river network (i.e., Chao Phraya River, Thachin River, and Pasak River) was investigated. An obvious metal concentration gradient in response to the intensity of urbanization was found at inter-watershed and intra-watershed scales. Sediment Quality Guidelines (SQGs) exceedances of several metals (Pb, Cr, Ni, Cu, and Zn) and high ecological risk were primarily identified at the down streams of Chao Phraya and Thachin watersheds, where the social-economic center of the country with intensive industries is located. Stepwise multiple linear regression revealed significant correlations between studied metals and catchment land use pattern (with p < 0.0001 except for Ni and Cr). Particularly, urban land use showed remarkable effect on sedimentary Pb, Cd, Cu, and Zn loads with high coefficients over 0.65. The results of cluster analysis and principal component analysis indicated the dominated urban/industrial sources for Pb, Cd, Cu, and Zn, mixed natural and industrial sources for Cr and Ni, and diffuse sources for Hg and As in the watersheds, respectively.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados/análisis , Medición de Riesgo , Ríos , Urbanización , Contaminantes Químicos del Agua/análisis
6.
Water Res ; 188: 116547, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33126002

RESUMEN

Membrane bioreactor (MBR) is an advantageous technology for wastewater treatment. However, efficient nutrient removal and membrane fouling mitigation remain major challenges in its applications. In this study, an electroconductive moving bed membrane bioreactor (EcMB-MBR) was proposed for simultaneous removal of organics and nutrients from domestic wastewater. The EcMB-MBR was composed of a submerged MBR, filled with electrodes and free-floating conductive media. Conductive media were introduced to reduce energy consumption in an electrochemical MBR, to improve nitrogen removal, and to mitigate membrane fouling. The results showed that COD, total nitrogen, and total phosphorus removal was up to 97.1 ± 1.4%, 88.8 ± 4.2%, and 99.0 ± 0.9%, respectively, in comparison with those of 93.4 ± 1.5%, 65.2 ± 5.3%, and 20.4 ± 11.3% in a conventional submerged MBR. Meanwhile, a total membrane resistance reduction of 26.7% was obtained in the EcMB-MBR. The optimized operating condition was determined at an intermittent electricity exposure time of 10 min-ON/10 min-OFF, and a direct current density of 15 A/m2. The interactions between electric current and conductive media were explored to understand the working mechanism in this proposed system. The conductive media reduced 21% of the electrical resistivity in the mixed liquor at a selected packing density of 0.20 (v/v). The combination of electrochemical process and conductive media specially enhanced the reduction of nitrate-nitrogen (NO3--N) through hybrid bio-electrochemical denitrification processes. These mechanisms involved with electrochemically assisted autotrophic denitrification by autotrophic denitrifying bacteria. As a result, 5.2% of NO3--N remained in the effluent of EcMB-MBR in comparison with that of 29.5% in the MBR. Membrane fouling was minimized via both mechanical scouring and electrochemical decomposition/precipitation of organic/particulate foulants. Furthermore, a preliminary cost analysis indicated that an additional operating cost of 0.081 USD/m3, accounting for 10 - 30% increment of the operating cost of a conventional MBR, was needed to enhance the nitrogen and phosphorus removal correspondingly in the EcMB-MBR.


Asunto(s)
Membranas Artificiales , Aguas Residuales , Lechos , Reactores Biológicos , Costos y Análisis de Costo , Membranas , Nitrógeno , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...