Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Sci Rep ; 14(1): 10400, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710823

Without the protective shielding of Earth's atmosphere, astronauts face higher doses of ionizing radiation in space, causing serious health concerns. Highly charged and high energy (HZE) particles are particularly effective in causing complex and difficult-to-repair DNA double-strand breaks compared to low linear energy transfer. Additionally, chronic cortisol exposure during spaceflight raises further concerns, although its specific impact on DNA damage and repair remains unknown. This study explorers the effect of different radiation qualities (photons, protons, carbon, and iron ions) on the DNA damage and repair of cortisol-conditioned primary human dermal fibroblasts. Besides, we introduce a new measure, the Foci-Integrated Damage Complexity Score (FIDCS), to assess DNA damage complexity by analyzing focus area and fluorescent intensity. Our results show that the FIDCS captured the DNA damage induced by different radiation qualities better than counting the number of foci, as traditionally done. Besides, using this measure, we were able to identify differences in DNA damage between cortisol-exposed cells and controls. This suggests that, besides measuring the total number of foci, considering the complexity of the DNA damage by means of the FIDCS can provide additional and, in our case, improved information when comparing different radiation qualities.


DNA Breaks, Double-Stranded , DNA Repair , Fibroblasts , Hydrocortisone , Humans , Fibroblasts/radiation effects , Fibroblasts/metabolism , DNA Breaks, Double-Stranded/radiation effects , Hydrocortisone/pharmacology , Radiation, Ionizing , Cells, Cultured , DNA Damage
2.
NPJ Microgravity ; 10(1): 16, 2024 Feb 10.
Article En | MEDLINE | ID: mdl-38341423

Progress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without gravity, helping us not only to understand the effects of gravitational alterations on biological systems but also the mechanisms underlying mechanoperception and cell/tissue response to mechanical and gravitational stresses. Despite the progress made so far, for future space exploration programs it is necessary to increase our knowledge on the mechanotransduction processes as well as on the molecular mechanisms underlying microgravity-induced cell and tissue alterations. This white paper reports the suggestions and recommendations of the SciSpacE Science Community for the elaboration of the section of the European Space Agency roadmap "Biology in Space and Analogue Environments" focusing on "How are cells and tissues influenced by gravity and what are the gravity perception mechanisms?" The knowledge gaps that prevent the Science Community from fully answering this question and the activities proposed to fill them are discussed.

3.
NPJ Microgravity ; 10(1): 3, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38200027

Regenerative life support systems (RLSS) will play a vital role in achieving self-sufficiency during long-distance space travel. Urine conversion into a liquid nitrate-based fertilizer is a key process in most RLSS. This study describes the effects of simulated microgravity (SMG) on Comamonas testosteroni, Nitrosomonas europaea, Nitrobacter winogradskyi and a tripartite culture of the three, in the context of nitrogen recovery for the Micro-Ecological Life Support System Alternative (MELiSSA). Rotary cell culture systems (RCCS) and random positioning machines (RPM) were used as SMG analogues. The transcriptional responses of the cultures were elucidated. For CO2-producing C. testosteroni and the tripartite culture, a PermaLifeTM PL-70 cell culture bag mounted on an in-house 3D-printed holder was applied to eliminate air bubble formation during SMG cultivation. Gene expression changes indicated that the fluid dynamics in SMG caused nutrient and O2 limitation. Genes involved in urea hydrolysis and nitrification were minimally affected, while denitrification-related gene expression was increased. The findings highlight potential challenges for nitrogen recovery in space.

4.
Int J Mol Sci ; 24(23)2023 Nov 29.
Article En | MEDLINE | ID: mdl-38069265

The space environment will expose astronauts to stressors like ionizing radiation, altered gravity fields and elevated cortisol levels, which pose a health risk. Understanding how the interplay between these stressors changes T cells' response is important to better characterize space-related immune dysfunction. We have exposed stimulated Jurkat cells to simulated space stressors (1 Gy, carbon ions/1 Gy photons, 1 µM hydrocortisone (HC), Mars, moon, and microgravity) in a single or combined manner. Pro-inflammatory cytokine IL-2 was measured in the supernatant of Jurkat cells and at the mRNA level. Results show that alone, HC, Mars gravity and microgravity significantly decrease IL-2 presence in the supernatant. 1 Gy carbon ion irradiation showed a smaller impact on IL-2 levels than photon irradiation. Combining exposure to different simulated space stressors seems to have less immunosuppressive effects. Gene expression was less impacted at the time-point collected. These findings showcase a complex T cell response to different conditions and suggest the importance of elevated cortisol levels in the context of space flight, also highlighting the need to use simulated partial gravity technologies to better understand the immune system's response to the space environment.


Space Flight , Weightlessness , Humans , Interleukin-2 , Hydrocortisone , Carbon
6.
Biomedicines ; 11(7)2023 Jul 06.
Article En | MEDLINE | ID: mdl-37509559

The lunar dust problem was first formulated in 1969 with NASA's first successful mission to land a human being on the surface of the Moon. Subsequent Apollo missions failed to keep the dust at bay, so exposure to the dust was unavoidable. In 1972, Harrison Schmitt suffered a brief sneezing attack, red eyes, an itchy throat, and congested sinuses in response to lunar dust. Some additional Apollo astronauts also reported allergy-like symptoms after tracking dust into the lunar module. Immediately following the Apollo missions, research into the toxic effects of lunar dust on the respiratory system gained a lot of interest. Moreover, researchers believed other organ systems might be at risk, including the skin and cornea. Secondary effects could translocate to the cardiovascular system, the immune system, and the brain. With current intentions to return humans to the moon and establish a semi-permanent presence on or near the moon's surface, integrated, end-to-end dust mitigation strategies are needed to enable sustainable lunar presence and architecture. The characteristics and formation of Martian dust are different from lunar dust, but advances in the research of lunar dust toxicity, mitigation, and protection strategies can prove strategic for future operations on Mars.

7.
Adv Healthc Mater ; 12(23): e2203338, 2023 09.
Article En | MEDLINE | ID: mdl-37312654

Bioprinting in space is the next frontier in tissue engineering. In the absence of gravity, novel opportunities arise, as well as new challenges. The cardiovascular system needs particular attention in tissue engineering, not only to develop safe countermeasures for astronauts in future deep and long-term space missions, but also to bring solutions to organ transplantation shortage. In this perspective, the challenges encountered when using bioprinting techniques in space and current gaps that need to be overcome are discussed. The recent developments that have been made in the bioprinting of heart tissues in space and an outlook on potential future bioprinting opportunities in space are described.


Bioprinting , Bioprinting/methods , Printing, Three-Dimensional , Tissue Engineering/methods , Heart , Tissue Scaffolds
8.
NPJ Microgravity ; 9(1): 48, 2023 Jun 21.
Article En | MEDLINE | ID: mdl-37344509

The spaceflight environment imposes risks for maintaining a healthy skin function as the observed delayed wound healing can contribute to increased risks of infection. To counteract delayed wound healing in space, a better understanding of the fibroblasts' reaction to altered gravity levels is needed. In this paper, we describe experiments that were carried out at the Large Diameter Centrifuge located in ESA-ESTEC as part of the ESA Academy 2021 Spin Your Thesis! Campaign. We exposed dermal fibroblasts to a set of altered gravity levels, including transitions between simulated microgravity and hypergravity. The addition of the stress hormone cortisol to the cell culture medium was done to account for possible interaction effects of gravity and cortisol exposure. Results show a main impact of cortisol on the secretion of pro-inflammatory cytokines as well as extracellular matrix proteins. Altered gravity mostly induced a delay in cellular migration and changes in mechanosensitive cell structures. Furthermore, 20 × g hypergravity transitions induced changes in nuclear morphology. These findings provide insights into the effect of gravity transitions on the fibroblasts' function related to wound healing, which may be useful for the development of countermeasures.

9.
NPJ Microgravity ; 9(1): 29, 2023 Apr 01.
Article En | MEDLINE | ID: mdl-37005397

Although we have sent humans into space for more than 50 years crucial questions regarding kidney physiology, volume regulation and osmoregulation remain unanswered. The complex interactions between the renin-angiotensin-aldosterone system, the sympathetic nervous system, osmoregulatory responses, glomerular function, tubular function, and environmental factors such as sodium and water intake, motion sickness and ambient temperature make it difficult to establish the exact effect of microgravity and the subsequent fluid shifts and muscle mass loss on these parameters. Unfortunately, not all responses to actual microgravity can be reproduced with head-down tilt bed rest studies, which complicates research on Earth. Better understanding of the effects of microgravity on kidney function, volume regulation and osmoregulation are needed with the advent of long-term deep space missions and planetary surface explorations during which orthostatic intolerance complaints or kidney stone formation can be life-threatening for astronauts. Galactic cosmic radiation may be a new threat to kidney function. In this review, we summarise and highlight the current understandings of the effects of microgravity on kidney function, volume regulation and osmoregulation and discuss knowledge gaps that future studies should address.

10.
NPJ Microgravity ; 9(1): 17, 2023 Feb 16.
Article En | MEDLINE | ID: mdl-36797288

The recent incidental discovery of an asymptomatic venous thrombosis (VT) in the internal jugular vein of an astronaut on the International Space Station prompted a necessary, immediate response from the space medicine community. The European Space Agency formed a topical team to review the pathophysiology, risk and clinical presentation of venous thrombosis and the evaluation of its prevention, diagnosis, mitigation, and management strategies in spaceflight. In this article, we discuss the findings of the ESA VT Topical Team over its 2-year term, report the key gaps as we see them in the above areas which are hindering understanding VT in space. We provide research recommendations in a stepwise manner that build upon existing resources, and highlight the initial steps required to enable further evaluation of this newly identified pertinent medical risk.

11.
Phys Med Biol ; 68(6)2023 03 15.
Article En | MEDLINE | ID: mdl-36821866

Objective. The lateral dose fall-off in proton pencil beam scanning (PBS) technique remains the preferred choice for sparing adjacent organs at risk as opposed to the distal edge due to the proton range uncertainties and potentially high relative biological effectiveness. However, because of the substantial spot size along with the scattering in the air and in the patient, the lateral penumbra in PBS can be degraded. Combining PBS with an aperture can result in a sharper dose fall-off, particularly for shallow targets.Approach. The aim of this work was to characterize the radiation fields produced by collimated and uncollimated 100 and 140 MeV proton beams, using Monte Carlo simulations and measurements with a MiniPIX-Timepix detector. The dose and the linear energy transfer (LET) were then coupled with publishedin silicobiophysical models to elucidate the potential biological effects of collimated and uncollimated fields.Main results. Combining an aperture with PBS reduced the absorbed dose in the lateral fall-off and out-of-field by 60%. However, the results also showed that the absolute frequency-averaged LET (LETF) values increased by a maximum of 3.5 keVµm-1in collimated relative to uncollimated fields, while the dose-averaged LET (LETD) increased by a maximum of 7 keVµm-1. Despite the higher LET values produced by collimated fields, the predicted DNA damage yields remained lower, owing to the large dose reduction.Significance. This work demonstrated the dosimetric advantages of combining an aperture with PBS coupled with lower DNA damage induction. A methodology for calculating dose in water derived from measurements with a silicon-based detector was also presented. This work is the first to demonstrate experimentally the increase in LET caused by combining PBS with aperture, and to assess the potential DNA damage which is the initial step in the cascade of events leading to the majority of radiation-induced biological effects.


Proton Therapy , Humans , Proton Therapy/methods , Protons , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Monte Carlo Method
12.
Biochem Biophys Rep ; 33: 101423, 2023 Mar.
Article En | MEDLINE | ID: mdl-36647554

Fibroblast migration is an important aspect of wound healing. Different factors can influence migration and as such proper wound healing. In vitro scratch wound assays are used to examine cellular migration. However, the wide array of techniques available reduces reproducibility of findings. In this paper, we compare two techniques for wound creation; i.e. the exclusion method or scratching of cell monolayers. Furthermore, we investigate if analysis software influences experimental outcome by comparing both commercially and freely available analysis software. Besides, we examine the effect of cortisol on migration behavior of fibroblasts and identify possible caveats in experimental design. Results show a significantly reduced migration of fibroblasts when wounds are created using a cell exclusion method. Furthermore, addition of cortisol to the cell culture media only reduced migration of fibroblast monolayers that had been scratched but not in those where wounds were created using the exclusion method. A possible explanation related to cytokine expression is discussed.

13.
Cells ; 12(2)2023 01 07.
Article En | MEDLINE | ID: mdl-36672184

Human spaceflight is associated with several health-related issues as a result of long-term exposure to microgravity, ionizing radiation, and higher levels of psychological stress. Frequent reported skin problems in space include rashes, itches, and a delayed wound healing. Access to space is restricted by financial and logistical issues; as a consequence, experimental sample sizes are often small, which limits the generalization of the results. Earth-based simulation models can be used to investigate cellular responses as a result of exposure to certain spaceflight stressors. Here, we describe the development of an in vitro model of the simulated spaceflight environment, which we used to investigate the combined effect of simulated microgravity using the random positioning machine (RPM), ionizing radiation, and stress hormones on the wound-healing capacity of human dermal fibroblasts. Fibroblasts were exposed to cortisol, after which they were irradiated with different radiation qualities (including X-rays, protons, carbon ions, and iron ions) followed by exposure to simulated microgravity using a random positioning machine (RPM). Data related to the inflammatory, proliferation, and remodeling phase of wound healing has been collected. Results show that spaceflight stressors can interfere with the wound healing process at any phase. Moreover, several interactions between the different spaceflight stressors were found. This highlights the complexity that needs to be taken into account when studying the effect of spaceflight stressors on certain biological processes and for the aim of countermeasures development.


Weightlessness , Humans , Weightlessness/adverse effects , Hydrocortisone/pharmacology , Weightlessness Simulation , Radiation, Ionizing , Wound Healing
14.
NPJ Microgravity ; 9(1): 8, 2023 Jan 27.
Article En | MEDLINE | ID: mdl-36707520

Human spaceflight is entering a new era of sustainable human space exploration. By 2030 humans will regularly fly to the Moon's orbit, return to the Moon's surface and preparations for crewed Mars missions will intensify. In planning these undertakings, several challenges will need to be addressed in order to ensure the safety of astronauts during their space travels. One of the important challenges to overcome, that could be a major showstopper of the space endeavor, is the exposure to the space radiation environment. There is an urgent need for quantifying, managing and limiting the detrimental health risks and electronics damage induced by space radiation exposure. Such risks raise key priority topics for space research programs. Risk limitation involves obtaining a better understanding of space weather phenomena and the complex radiation environment in spaceflight, as well as developing and applying accurate dosimetric instruments, understanding related short- and long-term health risks, and strategies for effective countermeasures to minimize both exposure to space radiation and the remaining effects post exposure. The ESA/SciSpacE Space Radiation White Paper identifies those topics and underlines priorities for future research and development, to enable safe human and robotic exploration of space beyond Low Earth Orbit.

15.
Front Physiol ; 14: 1322852, 2023.
Article En | MEDLINE | ID: mdl-38288353

Introduction: Long-term space missions trigger a prolonged neuroendocrine stress response leading to immune system dysregulation evidenced by susceptibility to infections, viral reactivation, and skin irritations. However, due to existing technical constraints, real-time functional immune assessments are not currently available to crew inflight. The in vitro cytokine release assay (CRA) has been effectively employed to study the stimulated cytokine response of immune cells in whole blood albeit limited to pre- and post-flight sessions. A novel two-valve reaction tube (RT) has been developed to enable the execution of the CRA on the International Space Station (ISS). Methods: In a comprehensive test campaign, we assessed the suitability of three materials (silicone, C-Flex, and PVC) for the RT design in terms of biochemical compatibility, chemical stability, and final data quality analysis. Furthermore, we thoroughly examined additional quality criteria such as safety, handling, and the frozen storage of antigens within the RTs. The validation of the proposed crew procedure was conducted during a parabolic flight campaign. Results: The selected material and procedure proved to be both feasible and secure yielding consistent and dependable data outcomes. This new hardware allows for the stimulation of blood samples on board the ISS, with subsequent analysis still conducted on the ground. Discussion: The resultant data promises to offer a more accurate understanding of the stress-induced neuroendocrine modulation of immunity during space travel providing valuable insights for the scientific community. Furthermore, the versatile nature of the RT suggests its potential utility as a testing platform for various other assays or sample types.

16.
Life Sci Alliance ; 5(11)2022 11.
Article En | MEDLINE | ID: mdl-35820706

Metastatic growth of ovarian cancer cells into the peritoneal cavity requires adaptation to various cellular stress factors to facilitate cell survival and growth. Here, we demonstrate the role of PVT1, one such stress induced long non-coding RNA, in ovarian cancer growth and metastasis. PVT1 is an amplified and overexpressed lncRNA in ovarian cancer with strong predictive value for survival and response to targeted therapeutics. We find that expression of PVT1 is regulated by tumor cells in response to cellular stress, particularly loss of cell-cell contacts and changes in matrix rigidity occurring in a YAP1-dependent manner. Induction of PVT1 promotes tumor cell survival, growth, and migration. Conversely, reducing PVT1 levels robustly abrogates metastatic behavior and tumor cell dissemination in cell lines and syngeneic transplantation models in vivo. We find that reducing PVT1 causes widespread changes in the transcriptome leading to alterations in cellular stress response and metabolic pathways including doxorubicin metabolism, which impacts chemosensitivity. Together, these findings implicate PVT1 as a promising therapeutic target to suppress metastasis and chemoresistance in ovarian cancer.


Ovarian Neoplasms , RNA, Long Noncoding , Cell Proliferation/physiology , Drug Resistance, Neoplasm , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
17.
Trends Biotechnol ; 40(4): 398-411, 2022 04.
Article En | MEDLINE | ID: mdl-34544616

Biofabrication in space is one of the novel promising and prospective research directions in the rapidly emerging field of space STEM. There are several advantages of biofabrication in space. Under microgravity, it is possible to engineer constructs using more fluidic channels and thus more biocompatible bioinks. Microgravity enables biofabrication of tissue and organ constructs of more complex geometries, thus facilitating novel scaffold-, label-, and nozzle-free technologies based on multi-levitation principles. However, when exposed to microgravity and cosmic radiation, biofabricated tissues could be used to study pathophysiological phenomena that will be useful on Earth and for deep space manned missions. Here, we provide leading concepts about the potential mutual benefits of the application of biofabrication technologies in space.


Tissue Engineering , Weightlessness , Prospective Studies
18.
Front Oncol ; 11: 768493, 2021.
Article En | MEDLINE | ID: mdl-34888245

Understanding the differences in biological response to photon and particle radiation is important for optimal exploitation of particle therapy for cancer patients, as well as for the adequate application of radiation protection measures for astronauts. To address this need, we compared the transcriptional profiles of isolated peripheral blood mononuclear cells 8 h after exposure to 1 Gy of X-rays, carbon ions or iron ions with those of non-irradiated cells using microarray technology. All genes that were found differentially expressed in response to either radiation type were up-regulated and predominantly controlled by p53. Quantitative PCR of selected genes revealed a significantly higher up-regulation 24 h after exposure to heavy ions as compared to X-rays, indicating their prolonged activation. This coincided with increased residual DNA damage as evidenced by quantitative γH2AX foci analysis. Furthermore, despite the converging p53 signature between radiation types, specific gene sets related to the immune response were significantly enriched in up-regulated genes following irradiation with heavy ions. In addition, irradiation, and in particular exposure to carbon ions, promoted transcript variation. Differences in basal and iron ion exposure-induced expression of DNA repair genes allowed the identification of a donor with distinct DNA repair profile. This suggests that gene signatures may serve as a sensitive indicator of individual DNA damage repair capacity. In conclusion, we have shown that photon and particle irradiation induce similar transcriptional pathways, albeit with variable amplitude and timing, but also elicit radiation type-specific responses that may have implications for cancer progression and treatment.

19.
Dentomaxillofac Radiol ; 50(6): 20210153, 2021 Sep 01.
Article En | MEDLINE | ID: mdl-33989056

OBJECTIVES: This review aimed to present studies that prospectively investigated biological effects in patients following diagnostic dentomaxillofacial radiology (DMFR). METHODS: Literature was systematically searched to retrieve all studies assessing radiobiological effects of using X-ray imaging in the dentomaxillofacial area, with reference to radiobiological outcomes for other imaging modalities and fields. RESULTS: There is a lot of variability in the reported radiobiological assessment methods and radiation dose measures, making comparisons of radiobiological studies challenging. Most radiological DMFR studies are focusing on genotoxicity and cytotoxicity, data for 2D dentomaxillofacial radiographs, albeit with some methodological weakness biasing the results. For CBCT, available evidence is limited and few studies include comparative data on both adults and children. CONCLUSIONS: In the future, one will have to strive towards patient-specific measures by considering age, gender and other individual radiation sensitivity-related factors. Ultimately, future radioprotection strategies should build further on the concept of personalized medicine, with patient-specific optimization of the imaging protocol, based on radiobiological variables.


Radiation Protection , Radiology , Adult , Bias , Child , Humans
20.
Biomedicines ; 10(1)2021 Dec 28.
Article En | MEDLINE | ID: mdl-35052739

On Earth, humans are subjected to a gravitational force that has been an important determinant in human evolution and function. During spaceflight, astronauts are subjected to several hazards including a prolonged state of microgravity that induces a myriad of physiological adaptations leading to orthostatic intolerance. This review summarises all known cardiovascular diseases related to human spaceflight and focusses on the cardiovascular changes related to human spaceflight (in vivo) as well as cellular and molecular changes (in vitro). Upon entering microgravity, cephalad fluid shift occurs and increases the stroke volume (35-46%) and cardiac output (18-41%). Despite this increase, astronauts enter a state of hypovolemia (10-15% decrease in blood volume). The absence of orthostatic pressure and a decrease in arterial pressures reduces the workload of the heart and is believed to be the underlying mechanism for the development of cardiac atrophy in space. Cellular and molecular changes include altered cell shape and endothelial dysfunction through suppressed cellular proliferation as well as increased cell apoptosis and oxidative stress. Human spaceflight is associated with several cardiovascular risk factors. Through the use of microgravity platforms, multiple physiological changes can be studied and stimulate the development of appropriate tools and countermeasures for future human spaceflight missions in low Earth orbit and beyond.

...