Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Geobiology ; 22(2): e12591, 2024.
Article En | MEDLINE | ID: mdl-38458993

Studies of the effects of volcanic activity on the Hawaiian Islands are extremely relevant due to the past and current co-eruptions at both Mauna Loa and Kilauea. The Big Island of Hawai'i is one of the most seismically monitored volcanic systems in the world, and recent investigations of the Big Island suggest a widespread subsurface connectivity between volcanoes. Volcanic activity has the potential to add mineral contaminants into groundwater ecosystems, thus affecting water quality, and making inhabitants of volcanic islands particularly vulnerable due to dependence on groundwater aquifers. As part of an interdisciplinary study on groundwater aquifers in Kona, Hawai'i, over 40 groundwater wells were sampled quarterly from August 2017 through March 2019, before and after the destructive eruption of the Kilauea East Rift Zone in May 2018. Sample sites occurred at great distance (~80 km) from Kilauea, allowing us to pose questions of how volcanic groundwater aquifers might be influenced by volcanic subsurface activity. Approximately 400 water samples were analyzed and temporally split by pre-eruption and post-eruption for biogeochemical analysis. While most geochemical constituents did not differ across quarterly sampling, microbial communities varied temporally (pre- and post-eruption). When a salinity threshold amongst samples was set, the greatest microbial community differences were observed in the freshest groundwater samples. Differential analysis indicated bacterial families with sulfur (S) metabolisms (sulfate reducers, sulfide oxidation, and disproportionation of S-intermediates) were enriched post-eruption. The diversity in S-cyclers without a corresponding change in sulfate geochemistry suggests cryptic cycling may occur in groundwater aquifers as a result of distant volcanic subsurface activity. Microbial communities, including taxa that cycle S, may be superior tracers to changes in groundwater quality, especially from direct inputs of subsurface volcanic activity.


Groundwater , Microbiota , Humans , Groundwater/analysis , Bacteria/metabolism , Sulfur/metabolism , Sulfates/metabolism
2.
ISME Commun ; 3(1): 58, 2023 Jun 07.
Article En | MEDLINE | ID: mdl-37286627

Resource-constrained island populations have thrived in Hawai'i for over a millennium, but now face aggressive new challenges to fundamental resources, including the security and sustainability of water resources. Characterizing the microbial community in groundwater ecosystems is a powerful approach to infer changes from human impacts due to land management in hydrogeological complex aquifers. In this study, we investigate how geology and land management influence geochemistry, microbial diversity and metabolic functions. We sampled a total of 19 wells over 2-years across the Hualalai watershed of Kona, Hawai'i analyzing geochemistry, and microbial communities by 16S rRNA amplicon sequencing. Geochemical analysis revealed significantly higher sulfate along the northwest volcanic rift zone, and high nitrogen (N) correlated with high on-site sewage disposal systems (OSDS) density. A total of 12,973 Amplicon Sequence Variants (ASV) were identified in 220 samples, including 865 ASVs classified as putative N and sulfur (S) cyclers. The N and S cyclers were dominated by a putative S-oxidizer coupled to complete denitrification (Acinetobacter), significantly enriched up to 4-times comparatively amongst samples grouped by geochemistry. The significant presence of Acinetobacter infers the bioremediation potential of volcanic groundwater for microbial-driven coupled S-oxidation and denitrification providing an ecosystem service for island populations dependent upon groundwater aquifers.

...