Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Med Food ; 20(8): 790-796, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28613963

RESUMEN

Antibacterial and cytotoxic activities of cyclohexane, dichloromethane, methanol, and aqueous extracts of Cantharellus cibarius were tested. Broth microdilution assay was performed against 10 bacterial strains (Staphylococcus aureus, S. epidermidis, Micrococcus luteus, Bacillus subtilis, Enterococcus feacalis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella abony), with emphasis on Helicobacter pylori. Methanol extract was the most active against H. pylori strains with minimal inhibitory concentration values between 4 and 32 µg/mL. All extracts were active against antibiotic resistant H. pylori. Methanol and aqueous extracts had no cytotoxicity against tested cell lines, whereas cyclohexane and dichloromethane extracts were active against HeLa and N87 cells, but also against healthy MRC-5 cells (IC50 39.26 ± 1.24-134.79 ± 0.01 µg/mL). The tested aqueous extracts have shown 68% of angiotensin-converting enzyme inhibitory activity in doses of 1.25 mg/mL. Chemical analysis has shown the presence of linoleic, cis-vaccenic, and oleic acids, sterols, ß-glucans, and polyphenolic compounds.


Asunto(s)
Antibacterianos/farmacología , Basidiomycota/química , Extractos Vegetales/farmacología , Antibacterianos/química , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química
2.
Saudi Pharm J ; 25(8): 1194-1200, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30166909

RESUMEN

The main goal of this study was to develop a liposome formulation with sulfanilamide and to investigate the liposomes impact on its release and stability to the UV-A/UV-B and UV-C irradiation. Liposome dispersions with incorporated sulfanilamide were prepared by thin-film hydration method and liposomes role to the sulfanilamide release was investigated by using a dialysis method. Comparatively, sulfanilamide in phosphate buffer solution was subject to release study as well to the UV irradiation providing for the possibilities of kinetics analysis. In vitro drug release study demonstrated that 20% of sulfanilamide was released from liposomes within 1 h that is approximately twice as slower as in the case of dissolved sulfanilamide in phosphate buffer solution. The kinetic release process can be described by Korsmeyer-Peppas model and according to the value of diffusion release exponent it can be concluded that drug release mechanism is based on the phenomenon of diffusion. The sulfanilamide degradation in phosphate buffer solution and liposomes is related to the formation of UV-induced degradation products that are identified by UHPLC/MS analysis as: sulfanilic acid, aniline and benzidine. The UV-induced sulfanilamide degradation in the phosphate buffer solution and liposome vesicles fits the first- order kinetic model. The degradation rate constants are dependent on the involved UV photons energy input as well as sulfanilamide microenvironment. Liposome microenvironment provides better irradiation sulfanilamide stability. The obtained results suggest that liposomes might be promising carriers for delayed sulfanilamide delivery and may serve as a basis for further research.

3.
Biotechnol Biotechnol Equip ; 29(1): 189-194, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-26019632

RESUMEN

Allicin is the most biologically active substance present in garlic. It can be synthesized or obtained by extraction of fresh garlic. Transformation products of allicin are also biologically active. The aim of this study was to examine the antioxidant activity of synthesized allicin and its transformation products obtained using microwaves in methanol at 55 °C as well as their effect on HeLa cells growth. The antioxidant activity was determined by DPPH (2,2-diphenyl-1-picrylhydrazyl radical) test. The effect on HeLa cells growth was determined by MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) test. For MTT test, allicin and its transformation products were dispersed in carmellose sodium solution and examined in concentrations ranging from 0.3 µg/mL to 3 mg/mL. Allicin showed stronger antioxidant activity than the transformation products. A maximum degree of neutralization of DPPH radicals, about 90%, was reached when the concentration of allicin was 2 mg/mL, with an EC50 (concentration of sample which is required for reduction of the initial concentration DPPH radicals to 50%) value of 0.37 mg/mL. In our study, allicin and its transformation products were not cytotoxic to HeLa cells under the examined conditions. The highest concentration of allicin and its transformation products had a slight antiproliferative effect, with a more pronounced effect of allicin, which reflected on the morphology of HeLa cells. The examined substances are safe to use on epithelial cells at concentrations up to 3 mg/mL when applied in carmellose sodium solution. Using carmellose sodium as a dispersing agent could be recommended as a good approach for testing liposoluble substances in liquid cell cultures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA