Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hepatology ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557779

RESUMEN

BACKGROUND AND AIMS: In the classical form of α1-antitrypsin deficiency, a misfolded variant α1-antitrypsin Z accumulates in the endoplasmic reticulum of liver cells and causes liver cell injury by gain-of-function proteotoxicity in a sub-group of affected homozygotes but relatively little is known about putative modifiers. Here, we carried out genomic sequencing in a uniquely affected family with an index case of liver failure and 2 homozygous siblings with minimal or no liver disease. Their sequences were compared to sequences in well-characterized cohorts of homozygotes with or without liver disease, and then candidate sequence variants were tested for changes in the kinetics of α1-antitrypsin variant Z degradation in iPS-derived hepatocyte-like cells derived from the affected siblings themselves. APPROACH AND RESULTS: Specific variants in autophagy genes MTMR12 and FAM134A could each accelerate the degradation of α1-antitrypsin variant Z in cells from the index patient, but both MTMR12 and FAM134A variants were needed to slow the degradation of α1-antitrypsin variant Z in cells from a protected sib, indicating that inheritance of both variants is needed to mediate the pathogenic effects of hepatic proteotoxicity at the cellular level. Analysis of homozygote cohorts showed that multiple patient-specific variants in proteostasis genes are likely to explain liver disease susceptibility at the population level. CONCLUSIONS: These results validate the concept that genetic variation in autophagy function can determine susceptibility to liver disease in α1-antitrypsin deficiency and provide evidence that polygenic mechanisms and multiple patient-specific variants are likely needed for proteotoxic pathology.

2.
Gastro Hep Adv ; 3(1): 67-77, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38292457

RESUMEN

BACKGROUND AND AIMS: Chronic liver injury that results in cirrhosis and end-stage liver disease (ESLD) causes more than 1 million deaths annually worldwide. Although the impact of genetic factors on the severity of metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-related liver disease (ALD) has been previously studied, their contribution to the development of ESLD remains largely unexplored. METHODS: We genotyped 6 MASLD-associated polymorphisms in healthy (n = 123), metabolic dysfunction-associated steatohepatitis (MASH) (n = 145), MASLD-associated ESLD (n = 72), and ALD-associated ESLD (n = 57) cohorts and performed multinomial logistic regression to determine the combined contribution of genetic, demographic, and clinical factors to the progression of ESLD. RESULTS: Distinct sets of factors are associated with the progression to ESLD. The PNPLA3 rs738409:G and TM6SF2 rs58542926:T alleles, body mass index (BMI), age, and female sex were positively associated with progression from a healthy state to MASH. The PNPLA3 rs738409:G allele, age, male sex, and having type 2 diabetes mellitus were positively associated, while BMI was negatively associated with progression from MASH to MASLD-associated ESLD. The PNPLA3 rs738409:G and GCKR rs780094:T alleles, age, and male sex were positively associated, while BMI was negatively associated with progression from a healthy state to ALD-associated ESLD. The findings indicate that the PNPLA3 rs738409:G allele increases susceptibility to ESLD regardless of etiology, the TM6SF2 rs58542926:T allele increases susceptibility to MASH, and the GCKR rs780094:T allele increases susceptibility to ALD-associated ESLD. CONCLUSION: The PNPLA3, TM6SF2, and GCKR minor alleles influence the progression of MASLD-associated or ALD-associated ESLD. Genotyping for these variants in MASLD and ALD patients can enhance risk assessment, prompting early interventions to prevent ESLD.

3.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37686209

RESUMEN

Metabolic-dysfunction-associated steatotic liver disease (MASLD), which affects 30 million people in the US and is anticipated to reach over 100 million by 2030, places a significant financial strain on the healthcare system. There is presently no FDA-approved treatment for MASLD despite its public health significance and financial burden. Understanding the connection between point mutations, liver enzymes, and MASLD is important for comprehending drug toxicity in healthy or diseased individuals. Multiple genetic variations have been linked to MASLD susceptibility through genome-wide association studies (GWAS), either increasing MASLD risk or protecting against it, such as PNPLA3 rs738409, MBOAT7 rs641738, GCKR rs780094, HSD17B13 rs72613567, and MTARC1 rs2642438. As the impact of genetic variants on the levels of drug-metabolizing cytochrome P450 (CYP) enzymes in human hepatocytes has not been thoroughly investigated, this study aims to describe the analysis of metabolic functions for selected phase I and phase II liver enzymes in human hepatocytes. For this purpose, fresh isolated primary hepatocytes were obtained from healthy liver donors (n = 126), and liquid chromatography-mass spectrometry (LC-MS) was performed. For the cohorts, participants were classified into minor homozygotes and nonminor homozygotes (major homozygotes + heterozygotes) for five gene polymorphisms. For phase I liver enzymes, we found a significant difference in the activity of CYP1A2 in human hepatocytes carrying MBOAT7 (p = 0.011) and of CYP2C8 in human hepatocytes carrying PNPLA3 (p = 0.004). It was also observed that the activity of CYP2C9 was significantly lower in human hepatocytes carrying HSD17B13 (p = 0.001) minor homozygous compared to nonminor homozygous. No significant difference in activity of CYP2E1, CYP2C8, CYP2D6, CYP2E1, CYP3A4, ECOD, FMO, MAO, AO, and CES2 and in any of the phase II liver enzymes between human hepatocytes carrying genetic variants for PNPLA3 rs738409, MBOAT7 rs641738, GCKR rs780094, HSD17B13 rs72613567, and MTARC1 rs2642438 were observed. These findings offer a preliminary assessment of the influence of genetic variations on drug-metabolizing cytochrome P450 (CYP) enzymes in healthy human hepatocytes, which may be useful for future drug discovery investigations.


Asunto(s)
Enfermedades del Sistema Digestivo , Hígado Graso , Hepatopatías , Humanos , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP2E1 , Estudio de Asociación del Genoma Completo , Hepatocitos
4.
Organogenesis ; 19(1): 2247576, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37598346

RESUMEN

Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), the most common types of cholestatic liver disease (CLD), result in enterohepatic obstruction, bile acid accumulation, and hepatotoxicity. The mechanisms by which hepatocytes respond to and cope with CLD remain largely unexplored. This study includes the characterization of hepatocytes isolated from explanted livers of patients with PBC and PSC. We examined the expression of hepatocyte-specific genes, intracellular bile acid (BA) levels, and oxidative stress in primary-human-hepatocytes (PHHs) isolated from explanted livers of patients with PBC and PSC and compared them with control normal human hepatocytes. Our findings provide valuable initial insights into the hepatocellular response to cholestasis in CLD and help support the use of PHHs as an experimental tool for these diseases.


Asunto(s)
Carcinoma Hepatocelular , Colestasis , Neoplasias Hepáticas , Humanos , Ácidos y Sales Biliares
5.
Front Med (Lausanne) ; 9: 964448, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36250086

RESUMEN

Acute hepatic failure is associated with high morbidity and mortality for which the only definitive therapy is liver transplantation. Some fraction of those who undergo emergency transplantation have been shown to recover native liver function when transplanted with an auxiliary hepatic graft that leaves part of the native liver intact. Thus, transplantation could have been averted with the development and use of some form of hepatic support. The costs of developing and testing liver support systems could be dramatically reduced by the availability of a reliable large animal model of hepatic failure with a large therapeutic window that allows the assessment of efficacy and timing of intervention. Non-lethal forms of hepatic injury were examined in combination with liver-directed radiation in non-human primates (NHPs) to develop a model of acute hepatic failure that mimics the human condition. Porcine hepatocyte transplantation was then tested as a potential therapy for acute hepatic failure. After liver-directed radiation therapy, delivery of a non-lethal hepatic ischemia-reperfusion injury reliably and rapidly generated liver failure providing conditions that can enable pre-clinical testing of liver support or replacement therapies. Unfortunately, in preliminary studies, low hepatocyte engraftment and over-immune suppression interfered with the ability to assess the efficacy of transplanted porcine hepatocytes in the model. A model of acute liver failure in NHPs was created that recapitulates the pathophysiology and pathology of the clinical condition, does so with reasonably predictable kinetics, and results in 100% mortality. The model allowed preliminary testing of xenogeneic hepatocyte transplantation as a potential therapy.

6.
Semin Liver Dis ; 42(4): 413-422, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36044927

RESUMEN

Although the underlying cause may vary across countries and demographic groups, liver disease is a major cause of morbidity and mortality globally. Orthotopic liver transplantation is the only definitive treatment for liver failure but is limited by the lack of donor livers. The development of drugs that prevent the progression of liver disease and the generation of alternative liver constructs for transplantation could help alleviate the burden of liver disease. Bioengineered livers containing human induced pluripotent stem cell (iPSC)-derived liver cells are being utilized to study liver disease and to identify and test potential therapeutics. Moreover, bioengineered livers containing pig hepatocytes and endothelial cells have been shown to function and survive after transplantation into pig models of liver failure, providing preclinical evidence toward future clinical applications. Finally, bioengineered livers containing human iPSC-derived liver cells have been shown to function and survive after transplantation in rodents but require considerable optimization and testing prior to clinical use. In conclusion, bioengineered livers have emerged as a suitable tool for modeling liver diseases and as a promising alternative graft for clinical transplantation. The integration of novel technologies and techniques for the assembly and analysis of bioengineered livers will undoubtedly expand future applications in basic research and clinical transplantation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Hepatopatías , Fallo Hepático , Humanos , Porcinos , Animales , Células Endoteliales , Hepatocitos , Hígado/fisiología , Hepatopatías/cirugía
7.
Hepatol Commun ; 5(11): 1911-1926, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34558820

RESUMEN

The only definitive therapy for end-stage liver disease is whole-organ transplantation. The success of this intervention is severely limited by the complexity of the surgery, the cost of patient care, the need for long-term immunosuppression, and the shortage of donor organs. In rodents and humans, end-stage degeneration of hepatocyte function is associated with disruption of the liver-specific transcriptional network and a nearly complete loss of promoter P1-driven hepatocyte nuclear factor 4-alpha (P1-HNF4α) activity. Re-expression of HNF4α2, the predominant P1-HNF4α, reinstates the transcriptional network, normalizes the genes important for hepatocyte function, and reverses liver failure in rodents. In this study, we tested the effectiveness of supplementary expression of human HNF4α2 messenger RNA (mRNA) in primary human hepatocytes isolated from explanted livers of patients who underwent transplant for end-stage irreversibly decompensated liver failure (Child-Pugh B, C) resulting from alcohol-mediated cirrhosis and nonalcoholic steatohepatitis. Re-expression of HNF4α2 in decompensated cirrhotic human hepatocytes corrects the disrupted transcriptional network and normalizes the expression of genes important for hepatocyte function, improving liver-specific protein expression. End-stage liver disease in humans is associated with both loss of P1-HNF4α expression and failure of its localization to the nucleus. We found that while HNF4α2 re-expression increased the amount of P1-HNF4α protein in hepatocytes, it did not alter the ability of hepatocytes to localize P1-HNF4α to their nuclei. Conclusion: Re-expression of HNF4α2 mRNA in livers of patients with end-stage disease may be an effective therapy for terminal liver failure that would circumvent the need for organ transplantation. The efficacy of this strategy may be enhanced by discovering the cause for loss of nuclear P1-HNF4α localization in end-stage cirrhosis, a process not found in rodent studies.


Asunto(s)
Reprogramación Celular/genética , Enfermedad Hepática en Estado Terminal/genética , Factor Nuclear 4 del Hepatocito/genética , Cirrosis Hepática/genética , ARN Mensajero/fisiología , Animales , Técnicas de Cultivo de Célula , Redes Reguladoras de Genes/genética , Hepatocitos/fisiología , Humanos , Hígado/citología , Regiones Promotoras Genéticas/genética
8.
Curr Opin Gastroenterol ; 37(3): 224-230, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33769378

RESUMEN

PURPOSE OF REVIEW: In this review, we will explore recent advances in human induced pluripotent stem cell (iPSC)-based modeling of metabolic liver disease and biofabrication of synthetic human liver tissue while also discussing the emerging concept of synthetic biology to generate more physiologically relevant liver disease models. RECENT FINDING: iPSC-based platforms have facilitated the study of underlying cellular mechanisms and potential therapeutic strategies for a number of metabolic liver diseases. Concurrently, rapid progress in biofabrication and gene editing technologies have led to the generation of human hepatic tissue that more closely mimic the complexity of the liver. SUMMARY: iPSC-based liver tissue is rapidly becoming available for modeling liver physiology due to its ability to recapitulate the complex three-dimensional architecture of the liver and recapitulate interactions between the different cell types and their surroundings. These mini livers have also been used to recapitulate liver disease pathways using the tools of synthetic biology, such as gene editing, to control gene circuits. Further development in this field will undoubtedly bolster future investigations not only in disease modeling and basic research, but also in personalized medicine and autologous transplantation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Hepatopatías , Enfermedades Metabólicas , Humanos , Hepatopatías/terapia
9.
Hepatol Commun ; 4(6): 859-875, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32490322

RESUMEN

Hepatocyte nuclear factor 4 alpha (HNF4α) is a transcription factor that plays a critical role in hepatocyte function, and HNF4α-based reprogramming corrects terminal liver failure in rats with chronic liver disease. In the livers of patients with advanced cirrhosis, HNF4α RNA expression levels decrease as hepatic function deteriorates, and protein expression is found in the cytoplasm. These findings could explain impaired hepatic function in patients with degenerative liver disease. In this study, we analyzed HNF4α localization and the pathways involved in post-translational modification of HNF4α in human hepatocytes from patients with decompensated liver function. RNA-sequencing analysis revealed that AKT-related pathways, specifically phospho-AKT, is down-regulated in cirrhotic hepatocytes from patients with terminal failure, in whom nuclear levels of HNF4α were significantly reduced, and cytoplasmic expression of HNF4α was increased. cMET was also significantly reduced in failing hepatocytes. Moreover, metabolic profiling showed a glycolytic phenotype in failing human hepatocytes. The contribution of cMET and phospho-AKT to nuclear localization of HNF4α was confirmed using Spearman's rank correlation test and pathway analysis, and further correlated with hepatic dysfunction by principal component analysis. HNF4α acetylation, a posttranslational modification important for nuclear retention, was also significantly reduced in failing human hepatocytes when compared with normal controls. Conclusion: These results suggest that the alterations in the cMET-AKT pathway directly correlate with HNF4α localization and level of hepatocyte dysfunction. This study suggests that manipulation of HNF4α and pathways involved in HNF4α posttranslational modification may restore hepatocyte function in patients with terminal liver failure.

10.
J Hepatol ; 66(5): 987-1000, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28027971

RESUMEN

BACKGROUND & AIMS: Hepatocyte transplantation partially corrects genetic disorders and has been associated anecdotally with reversal of acute liver failure. Monitoring for graft function and rejection has been difficult, and has contributed to limited graft survival. Here we aimed to use preparative liver-directed radiation therapy, and continuous monitoring for possible rejection in an attempt to overcome these limitations. METHODS: Preparative hepatic irradiation was examined in non-human primates as a strategy to improve engraftment of donor hepatocytes, and was then applied in human subjects. T cell immune monitoring was also examined in human subjects to assess adequacy of immunosuppression. RESULTS: Porcine hepatocyte transplants engrafted and expanded to comprise up to 15% of irradiated segments in immunosuppressed monkeys preconditioned with 10Gy liver-directed irradiation. Two patients with urea cycle deficiencies had early graft loss following hepatocyte transplantation; retrospective immune monitoring suggested the need for additional immunosuppression. Preparative radiation, anti-lymphocyte induction, and frequent immune monitoring were instituted for hepatocyte transplantation in a 27year old female with classical phenylketonuria. Post-transplant liver biopsies demonstrated multiple small clusters of transplanted cells, multiple mitoses, and Ki67+ hepatocytes. Mean peripheral blood phenylalanine (PHE) level fell from pre-transplant levels of 1343±48µM (normal 30-119µM) to 854±25µM (treatment goal ≤360µM) after transplant (36% decrease; p<0.0001), despite transplantation of only half the target number of donor hepatocytes. PHE levels remained below 900µM during supervised follow-up, but graft loss occurred after follow-up became inconsistent. CONCLUSIONS: Radiation preconditioning and serial rejection risk assessment may produce better engraftment and long-term survival of transplanted hepatocytes. Hepatocyte xenografts engraft for a period of months in non-human primates and may provide effective therapy for patients with acute liver failure. LAY SUMMARY: Hepatocyte transplantation can potentially be used to treat genetic liver disorders but its application in clinical practice has been impeded by inefficient hepatocyte engraftment and the inability to monitor rejection of transplanted liver cells. In this study, we first show in non-human primates that pretreatment of the host liver with radiation improves the engraftment of transplanted liver cells. We then used this knowledge in a series of clinical hepatocyte transplants in patients with genetic liver disorders to show that radiation pretreatment and rejection risk monitoring are safe and, if optimized, could improve engraftment and long-term survival of transplanted hepatocytes in patients.


Asunto(s)
Rechazo de Injerto , Hepatocitos/trasplante , Hígado/efectos de la radiación , Acondicionamiento Pretrasplante , Adulto , Animales , Femenino , Humanos , Hepatopatías/terapia , Macaca fascicularis , Masculino , Porcinos , Trasplante Heterólogo
11.
Hepatology ; 62(1): 147-57, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25690322

RESUMEN

UNLABELLED: In the classical form of α1-antitrypsin deficiency (ATD), aberrant intracellular accumulation of misfolded mutant α1-antitrypsin Z (ATZ) in hepatocytes causes hepatic damage by a gain-of-function, "proteotoxic" mechanism. Whereas some ATD patients develop severe liver disease (SLD) that necessitates liver transplantation, others with the same genetic defect completely escape this clinical phenotype. We investigated whether induced pluripotent stem cells (iPSCs) from ATD individuals with or without SLD could model these personalized variations in hepatic disease phenotypes. Patient-specific iPSCs were generated from ATD patients and a control and differentiated into hepatocyte-like cells (iHeps) having many characteristics of hepatocytes. Pulse-chase and endoglycosidase H analysis demonstrate that the iHeps recapitulate the abnormal accumulation and processing of the ATZ molecule, compared to the wild-type AT molecule. Measurements of the fate of intracellular ATZ show a marked delay in the rate of ATZ degradation in iHeps from SLD patients, compared to those from no liver disease patients. Transmission electron microscopy showed dilated rough endoplasmic reticulum in iHeps from all individuals with ATD, not in controls, but globular inclusions that are partially covered with ribosomes were observed only in iHeps from individuals with SLD. CONCLUSION: iHeps model the individual disease phenotypes of ATD patients with more rapid degradation of misfolded ATZ and lack of globular inclusions in cells from patients who have escaped liver disease. The results support the concept that "proteostasis" mechanisms, such as intracellular degradation pathways, play a role in observed variations in clinical phenotype and show that iPSCs can potentially be used to facilitate predictions of disease susceptibility for more precise and timely application of therapeutic strategies.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Hepatopatías/etiología , Deficiencia de alfa 1-Antitripsina/complicaciones , Células Cultivadas , Retículo Endoplásmico Rugoso/metabolismo , Humanos , Hepatopatías/metabolismo , alfa 1-Antitripsina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...