Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 49
1.
Int J Biol Macromol ; 255: 128301, 2024 Jan.
Article En | MEDLINE | ID: mdl-37992935

The general molecular form of type I collagen is heterotrimer consisting of two α1(I) chains and one α2(I) chain. However, α111(I) homotrimer is rarely observed in vivo, especially in pathological tissues such as cancer. Here we utilized a previously developed LC-MS method that can accurately and sensitively quantitate α1(I) and α2(I) chains to distinguish type I collagen homotrimer from human placenta. By monitoring with the LC-MS method, the α1(I)/α2(I) chain ratio was found to be high in the supernatant of salt precipitation with >2.8 M NaCl at neutral pH. Type I collagen homotrimer was successfully isolated using optimized sequential salt fractionation and confirmed to show previously reported features of the homotrimer, including high thermal stability and overmodification. These data clearly indicate that placental tissue contains α111(I) homotrimer. Our LC-MS method can sensitively detect the rare form of type I collagen and can help understand its physiological and pathological significance.


Collagen Type I , Collagen , Female , Pregnancy , Humans , Collagen Type I/chemistry , Collagen/chemistry , Chromatography, Liquid , Liquid Chromatography-Mass Spectrometry , Placenta , Tandem Mass Spectrometry
3.
J Biol Chem ; 299(7): 104901, 2023 07.
Article En | MEDLINE | ID: mdl-37302550

Collagen superfamily of proteins is a major component of the extracellular matrix. Defects in collagens underlie the cause of nearly 40 human genetic diseases in millions of people worldwide. Pathogenesis typically involves genetic alterations of the triple helix, a hallmark structural feature that bestows exceptional mechanical resistance to tensile forces and a capacity to bind a plethora of macromolecules. Yet, there is a paramount knowledge gap in understanding the functionality of distinct sites along the triple helix. Here, we present a recombinant technique to produce triple helical fragments for functional studies. The experimental strategy utilizes the unique capacity of the NC2 heterotrimerization domain of collagen IX to drive three α-chain selection and registering the triple helix stagger. For proof of principle, we produced and characterized long triple helical fragments of collagen IV that were expressed in a mammalian system. The heterotrimeric fragments encompassed the CB3 trimeric peptide of collagen IV, which harbors the binding motifs for α1ß1 and α2ß1 integrins. Fragments were characterized and shown to have a stable triple helix, post-translational modifications, and high affinity and specific binding of integrins. The NC2 technique is a universal tool for the high-yield production of heterotrimeric fragments of collagens. Fragments are suitable for mapping functional sites, determining coding sequences of binding sites, elucidating pathogenicity and pathogenic mechanisms of genetic mutations, and production of fragments for protein replacement therapy.


Collagen Type IV , Integrins , Protein Multimerization , Animals , Humans , Binding Sites , Collagen Type IV/chemistry , Collagen Type IV/genetics , Collagen Type IV/metabolism , Integrins/chemistry , Integrins/metabolism , Protein Binding , Protein Structure, Secondary , Mutation , Protein Domains
4.
Aging Cell ; 22(9): e13903, 2023 09.
Article En | MEDLINE | ID: mdl-37365004

Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder affecting tissues of mesenchymal origin. Most individuals with HGPS harbor a de novo c.1824C > T (p.G608G) mutation in the gene encoding lamin A (LMNA), which activates a cryptic splice donor site resulting in production of the toxic "progerin" protein. Clinical manifestations include growth deficiency, lipodystrophy, sclerotic dermis, cardiovascular defects, and bone dysplasia. Here we utilized the LmnaG609G knock-in (KI) mouse model of HGPS to further define mechanisms of bone loss associated with normal and premature aging disorders. Newborn skeletal staining of KI mice revealed altered rib cage shape and spinal curvature, and delayed calvarial mineralization with increased craniofacial and mandibular cartilage content. MicroCT analysis and mechanical testing of adult femurs indicated increased fragility associated with reduced bone mass, recapitulating the progressive bone deterioration that occurs in HGPS patients. We investigated mechanisms of bone loss in KI mice at the cellular level in bone cell populations. Formation of wild-type and KI osteoclasts from marrow-derived precursors was inhibited by KI osteoblast-conditioned media in vitro, suggesting a secreted factor(s) responsible for decreased osteoclasts on KI trabecular surfaces in vivo. Cultured KI osteoblasts exhibited abnormal differentiation characterized by reduced deposition and mineralization of extracellular matrix with increased lipid accumulation compared to wild-type, providing a mechanism for altered bone formation. Furthermore, quantitative analyses of KI transcripts confirmed upregulation of adipogenic genes both in vitro and in vivo. Thus, osteoblast phenotypic plasticity, inflammation and altered cellular cross-talk contribute to abnormal bone formation in HGPS mice.


Aging, Premature , Bone Diseases, Developmental , Progeria , Mice , Animals , Progeria/genetics , Progeria/metabolism , Mutation , Lamin Type A/genetics , Lamin Type A/metabolism , Cell Differentiation
5.
J Int Soc Sports Nutr ; 20(1): 2206392, 2023 Dec.
Article En | MEDLINE | ID: mdl-37133292

BACKGROUND: Post-exercise muscle soreness and fatigue can negatively affect exercise performance. Thus, it is desirable to attenuate muscle soreness and fatigue and promote recovery even for daily exercise habits aimed at maintaining or improving health. METHODS: This study investigated the effects of dietary collagen peptides (CPs) on post-exercise physical condition and fitness in healthy middle-aged adults unfamiliar with exercise. Middle-aged males (n = 20, 52.6 ± 5.8 years) received the active food (10 g of CPs per day) or the placebo food for 33 days in each period of the randomized crossover trial (registered at the University Hospital Medical Information Network Clinical Trials Registry with UMIN-CTR ID of UMIN000041441). On the 29th day, participants performed a maximum of five sets of 40 bodyweight squats. Muscle soreness as the primary outcome, fatigue, the maximum knee extension force during isometric muscle contraction of both legs, the range of motion (ROM), and the blood level of creatine phosphokinase (CPK) and lactate dehydrogenase (LDH) were assessed before and after the exercise load. RESULTS: The analysis set was the per-protocol set (n = 18, 52.6 ± 6.0 years) for efficacy and the full analysis set (n = 19, 52.8 ± 5.9 years) for safety. The visual analog scale (VAS) of muscle soreness immediately after the exercise load was significantly lower in the active group than in the placebo group (32.0 ± 25.0 mm versus 45.8 ± 27.6 mm, p < 0.001). The VAS of fatigue immediately after the exercise load was also significantly lower in the active group than in the placebo group (47.3 ± 25.0 mm versus 59.0 ± 22.3 mm, p < 0.001). Two days (48 hours) afterthe exercise load, muscle strength was significantly higher in the active group than in the placebo group (85.2 ± 27.8 kg versus 80.5 ± 25.3 kg, p = 0.035). The level of CPK did not change over time. The level of LDH increased slightly but was not different between the groups. No safety-related issues were observed. CONCLUSIONS: These results showed that dietary CPs alleviated muscle soreness and fatigue and affected muscle strength after exercise load in healthy middle-aged males.


Exercise , Myalgia , Adult , Male , Middle Aged , Humans , Myalgia/prevention & control , Myalgia/drug therapy , Cross-Over Studies , Exercise/physiology , Diet , Fatigue , Muscle, Skeletal , Dietary Supplements
6.
J Biol Chem ; 298(12): 102713, 2022 12.
Article En | MEDLINE | ID: mdl-36403858

Collagens are the most abundant proteins in the body and among the most biosynthetically complex. A molecular ensemble of over 20 endoplasmic reticulum resident proteins participates in collagen biosynthesis and contributes to heterogeneous post-translational modifications. Pathogenic variants in genes encoding collagens cause connective tissue disorders, including osteogenesis imperfecta, Ehlers-Danlos syndrome, and Gould syndrome (caused by mutations in COL4A1 and COL4A2), and pathogenic variants in genes encoding proteins required for collagen biosynthesis can cause similar but overlapping clinical phenotypes. Notably, pathogenic variants in lysyl hydroxylase 3 (LH3) cause a multisystem connective tissue disorder that exhibits pathophysiological features of collagen-related disorders. LH3 is a multifunctional collagen-modifying enzyme; however, its precise role(s) and substrate specificity during collagen biosynthesis has not been defined. To address this critical gap in knowledge, we generated LH3 KO cells and performed detailed quantitative and molecular analyses of collagen substrates. We found that LH3 deficiency severely impaired secretion of collagen α1α1α2(IV) but not collagens α1α1α2(I) or α1α1α1(III). Amino acid analysis revealed that LH3 is a selective LH for collagen α1α1α2(IV) but a general glucosyltransferase for collagens α1α1α2(IV), α1α1α2(I), and α1α1α1(III). Importantly, we identified rare variants that are predicted to be pathogenic in the gene encoding LH3 in two of 113 fetuses with intracranial hemorrhage-a cardinal feature of Gould syndrome. Collectively, our findings highlight a critical role of LH3 in α1α1α2(IV) biosynthesis and suggest that LH3 pathogenic variants might contribute to Gould syndrome.


Collagen , Connective Tissue Diseases , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase , Humans , Collagen/metabolism , Glycosylation , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/metabolism , Protein Processing, Post-Translational
7.
Sci Rep ; 12(1): 14256, 2022 08 22.
Article En | MEDLINE | ID: mdl-35995931

Lysyl hydroxylase 2 (LH2) is a member of LH family that catalyzes the hydroxylation of lysine (Lys) residues on collagen, and this particular isozyme has been implicated in various diseases. While its function as a telopeptidyl LH is generally accepted, several fundamental questions remain unanswered: 1. Does LH2 catalyze the hydroxylation of all telopeptidyl Lys residues of collagen? 2. Is LH2 involved in the helical Lys hydroxylation? 3. What are the functional consequences when LH2 is completely absent? To answer these questions, we generated LH2-null MC3T3 cells (LH2KO), and extensively characterized the type I collagen phenotypes in comparison with controls. Cross-link analysis demonstrated that the hydroxylysine-aldehyde (Hylald)-derived cross-links were completely absent from LH2KO collagen with concomitant increases in the Lysald-derived cross-links. Mass spectrometric analysis revealed that, in LH2KO type I collagen, telopeptidyl Lys hydroxylation was completely abolished at all sites while helical Lys hydroxylation was slightly diminished in a site-specific manner. Moreover, di-glycosylated Hyl was diminished at the expense of mono-glycosylated Hyl. LH2KO collagen was highly soluble and digestible, fibril diameters were diminished, and mineralization impaired when compared to controls. Together, these data underscore the critical role of LH2-catalyzed collagen modifications in collagen stability, organization and mineralization in MC3T3 cells.


Collagen Type I , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase , Collagen/metabolism , Collagen Type I/metabolism , Hydroxylation , Lysine/metabolism , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/metabolism , Protein Processing, Post-Translational
8.
NPJ Sci Food ; 6(1): 29, 2022 Jun 03.
Article En | MEDLINE | ID: mdl-35662250

There are increasing reports demonstrating high bioavailability of 4-hydroxyproline (4Hyp)-containing oligopeptides after oral ingestion of collagen hydrolysate and their bioactivity. In contrast, no study investigates the fate of another collagen-specific but minor amino acid, 3Hyp. Here, we identified Gly-3Hyp-4Hyp tripeptide in human blood at high concentrations, comparable to other 4Hyp-containing oligopeptides, after ingesting porcine skin collagen hydrolysate. Additionally, Gly-3Hyp-4Hyp uniquely maintained the maximum concentration until 4 h after the ingestion due to its exceptionally high resistance to peptidase/protease demonstrated by incubation with mouse plasma. In mice, oral administration of collagen hydrolysate prepared from bovine tendon, which contains a higher amount of 3Hyp, further increased blood Gly-3Hyp-4Hyp levels compared to that from bovine skin. Furthermore, Gly-3Hyp-4Hyp showed chemotactic activity on skin fibroblasts and promoted osteoblast differentiation. These results highlight the specific nature of the Gly-3Hyp-4Hyp tripeptide and its potential for health promotion and disease treatment.

9.
Int J Mol Sci ; 23(4)2022 Feb 12.
Article En | MEDLINE | ID: mdl-35216155

Triple helix formation of procollagen occurs in the endoplasmic reticulum (ER) where the single-stranded α-chains of procollagen undergo extensive post-translational modifications. The modifications include prolyl 4- and 3-hydroxylations, lysyl hydroxylation, and following glycosylations. The modifications, especially prolyl 4-hydroxylation, enhance the thermal stability of the procollagen triple helix. Procollagen molecules are transported to the Golgi and secreted from the cell, after the triple helix is formed in the ER. In this study, we investigated the relationship between the thermal stability of the collagen triple helix and environmental temperature. We analyzed the number of collagen post-translational modifications and thermal melting temperature and α-chain composition of secreted type I collagen in zebrafish embryonic fibroblasts (ZF4) cultured at various temperatures (18, 23, 28, and 33 °C). The results revealed that thermal stability and other properties of collagen were almost constant when ZF4 cells were cultured below 28 °C. By contrast, at a higher temperature (33 °C), an increase in the number of post-translational modifications and a change in α-chain composition of type I collagen were observed; hence, the collagen acquired higher thermal stability. The results indicate that the thermal stability of collagen could be autonomously tuned according to the environmental temperature in poikilotherms.


Collagen/chemistry , Animals , Cell Line , Collagen/metabolism , Fibroblasts/metabolism , Protein Conformation, alpha-Helical , Protein Processing, Post-Translational , Protein Stability , Temperature , Zebrafish
10.
Bone ; 154: 116242, 2022 01.
Article En | MEDLINE | ID: mdl-34718219

Lysyl hydroxylase 2 (LH2) is an enzyme that catalyzes the hydroxylation of lysine (Lys) residues in fibrillar collagen telopeptides, a critical post-translational modification for the stability of intermolecular cross-links. Though abnormal LH2 activities have been implicated in various diseases including Bruck syndrome, the molecular basis of the pathologies is still not well understood. Since LH2 null mice die at early embryonic stage, we generated LH2 heterozygous (LH2+/-) mice in which LH2 level is significantly diminished, and characterized collagen and bone phenotypes using femurs. Compared to the wild-type (WT), LH2+/- collagen showed a significant decrease in the ratio of hydroxylysine (Hyl)- to the Lys-aldehyde-derived collagen cross-links without affecting the total number of aldehydes involved in cross-links. Mass spectrometric analysis revealed that, in LH2+/- type I collagen, the extent of hydroxylation of all telopeptidyl Lys residues was significantly decreased. In the helical domain, Lys hydroxylation at the cross-linking sites was either unaffected or slightly lower, but other sites were significantly diminished compared to WT. In LH2+/- femurs, mineral densities of cortical and cancellous bones were significantly decreased and the mechanical properties of cortical bones evaluated by nanoindentation analysis were compromised. When cultured, LH2+/- osteoblasts poorly produced mineralized nodules compared to WT osteoblasts. These data provide insight into the functionality of LH2 in collagen molecular phenotype and its critical role in bone matrix mineralization and mechanical properties.


Osteogenesis Imperfecta , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/metabolism , Animals , Collagen/chemistry , Collagen Type I/genetics , Mice , Phenotype , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/chemistry , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/pharmacokinetics
11.
PLoS One ; 16(10): e0258699, 2021.
Article En | MEDLINE | ID: mdl-34714842

We investigated the characteristics of extracellular matrix (ECM) in the soft tissue of two frozen baby woolly mammoths (Mammuthus primigenius) that died and were buried in Siberian permafrost approximately 40,000 years ago. Morphological and biochemical analyses of mammoth lung and liver demonstrated that those soft tissues were preserved at the gross anatomical and histological levels. The ultrastructure of ECM components, namely a fibrillar structure with a collagen-characteristic pattern of cross-striation, was clearly visible with transmission and scanning electron microscopy. Type I and type IV collagens were detected by immunohistochemical observation. Quantitative amino acid analysis of liver and lung tissues of the baby mammoths indicated that collagenous protein is selectively preserved in these tissues as a main protein. Type I and type III collagens were detected as major components by means of liquid chromatography-mass spectrometry analysis after digestion with trypsin. These results indicate that the triple helical collagen molecule, which is resistant to proteinase digestion, has been preserved in the soft tissues of these frozen mammoths for 40,000 years.


Collagen/analysis , Extracellular Matrix/ultrastructure , Liver/metabolism , Lung/metabolism , Mammoths/metabolism , Animals , Chromatography, Liquid , Collagen/genetics , Collagen Type I/analysis , Collagen Type I/genetics , Collagen Type IV/analysis , Collagen Type IV/genetics , Extracellular Matrix/metabolism , Female , Fossils/ultrastructure , Liver/ultrastructure , Lung/ultrastructure , Mass Spectrometry , Permafrost , Preservation, Biological , Sequence Analysis, Protein , Siberia
12.
Matrix Biol Plus ; 10: 100067, 2021 Jun.
Article En | MEDLINE | ID: mdl-34195597

There is a general consensus that collagen stability is largely maintained by Pro and its major hydroxylated form, 4-hydroxyproline (4Hyp). However, positional difference in their stabilizing effect at the Xaa or Yaa position of collagenous Gly-Xaa-Yaa sequences has remained inconclusive. Here, we position-specifically evaluated the correlation of imino acid contents to denaturation temperature (Td) of collagen among various vertebrate and invertebrate species, using a recently developed LC-MS methodology. 4Hyp at the Yaa position showed the highest positive correlation with Td, followed by Pro at the Xaa position, which was even further increased by excluding invertebrates. We confirmed that Gly-Pro-4Hyp liberated after bacterial collagenase digestion was highly positively correlated with Td. Furthermore, other tripeptides with Yaa position 4Hyp also had comparable positive correlation, excepting negative correlation of Gly-Gly-4Hyp, while tripeptides with Xaa position Pro did not. These data provide evidence that 4Hyp dominantly contributes to thermal stability of collagen depending on its sequence position, especially in vertebrates.

13.
J Biol Chem ; 297(1): 100819, 2021 07.
Article En | MEDLINE | ID: mdl-34029590

Collagen-derived hydroxyproline (Hyp)-containing peptides have a variety of biological effects on cells. These bioactive collagen peptides are locally generated by the degradation of endogenous collagen in response to injury. However, no comprehensive study has yet explored the functional links between Hyp-containing peptides and cellular behavior. Here, we show that the dipeptide prolyl-4-hydroxyproline (Pro-Hyp) exhibits pronounced effects on mouse tendon cells. Pro-Hyp promotes differentiation/maturation of tendon cells with modulation of lineage-specific factors and induces significant chemotactic activity in vitro. In addition, Pro-Hyp has profound effects on cell proliferation, with significantly upregulated extracellular signal-regulated kinase phosphorylation and extracellular matrix production and increased type I collagen network organization. Using proteomics, we have predicted molecular transport, cellular assembly and organization, and cellular movement as potential linked-network pathways that could be altered in response to Pro-Hyp. Mechanistically, cells treated with Pro-Hyp demonstrate increased directional persistence and significantly increased directed motility and migration velocity. They are accompanied by elongated lamellipodial protrusions with increased levels of active ß1-integrin-containing focal contacts, as well as reorganization of thicker peripheral F-actin fibrils. Pro-Hyp-mediated chemotactic activity is significantly reduced (p < 0.001) in cells treated with the mitogen-activated protein kinase kinase 1/2 inhibitor PD98059 or the α5ß1-integrin antagonist ATN-161. Furthermore, ATN-161 significantly inhibits uptake of Pro-Hyp into adult tenocytes. Thus, our findings document the molecular basis of the functional benefits of the Pro-Hyp dipeptide in cellular behavior. These dynamic properties of collagen-derived Pro-Hyp dipeptide could lead the way to its application in translational medicine.


Cell Movement/drug effects , Dipeptides/pharmacology , Homeostasis/drug effects , Integrin beta1/metabolism , Pseudopodia/metabolism , Tendons/cytology , Aging , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Collagen Type I/genetics , Collagen Type I/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Mice , Pseudopodia/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism , Tenocytes/cytology , Tenocytes/drug effects , Up-Regulation/drug effects
14.
Curr Res Food Sci ; 4: 175-181, 2021.
Article En | MEDLINE | ID: mdl-33870215

Collagen hydrolysate has various beneficial effects, such as bone strengthening, joint/skin protection and lipid metabolism regulation. In this study, the anti-obesity activity of ginger protease-degraded collagen hydrolysate (GDCH) was evaluated in BALB/c mice fed diets containing 14% casein (control group) or 10% casein +4% GDCH (GDCH group) for 10 weeks. In the GDCH group, triglyceride (TG) and cholesterol (CHO) levels in blood and adipocyte size in white adipose tissue were significantly decreased compared with those of the control group. Further, gene expression related to fatty acid synthesis, such as acetyl-CoA carboxylase, fatty acid synthase and stearoyl-CoA desaturase, was decreased in the liver and white adipose tissue of GDCH-fed mice. On the other hand, single oral administration of GDCH did not result in decrease in blood TG and CHO compared with vehicle and casein in ICR mice pre-administered soybean oil. These results suggest that the GDCH-induced decreases in tissue and blood lipids occur through long-term alterations in lipid metabolism, not transient inhibition of lipid absorption. The lipid-lowering effects exhibited by partial substitution of casein with GDCH imply the possibility that daily supplementation of GDCH contributes to prevention/attenuation of obesity and hyperlipidemia.

15.
Sci Rep ; 11(1): 8659, 2021 04 21.
Article En | MEDLINE | ID: mdl-33883562

In spite of major advances over the past several decades in diagnosis and treatment, breast cancer remains a global cause of morbidity and premature death for both human and veterinary patients. Due to multiple shared clinicopathological features, dogs provide an excellent model of human breast cancer, thus, a comparative oncology approach may advance our understanding of breast cancer biology and improve patient outcomes. Despite an increasing awareness of the critical role of fibrillar collagens in breast cancer biology, tumor-permissive collagen features are still ill-defined. Here, we characterize the molecular and morphological phenotypes of type I collagen in canine mammary gland tumors. Canine mammary carcinoma samples contained longer collagen fibers as well as a greater population of wider fibers compared to non-neoplastic and adenoma samples. Furthermore, the total number of collagen cross-links enriched in the stable hydroxylysine-aldehyde derived cross-links was significantly increased in neoplastic mammary gland samples compared to non-neoplastic mammary gland tissue. The mass spectrometric analyses of type I collagen revealed that in malignant mammary tumor samples, lysine residues, in particular those in the telopeptides, were markedly over-hydroxylated in comparison to non-neoplastic mammary tissue. The extent of glycosylation of hydroxylysine residues was comparable among the groups. Consistent with these data, expression levels of genes encoding lysyl hydroxylase 2 (LH2) and its molecular chaperone FK506-binding protein 65 were both significantly increased in neoplastic samples. These alterations likely lead to an increase in the LH2-mediated stable collagen cross-links in mammary carcinoma that may promote tumor cell metastasis in these patients.


Collagen/metabolism , Dog Diseases/metabolism , Mammary Glands, Animal/metabolism , Mammary Neoplasms, Animal/metabolism , Amino Acids/metabolism , Animals , Collagen Type I/metabolism , Dog Diseases/pathology , Dogs , Female , Mammary Glands, Animal/pathology , Mammary Neoplasms, Animal/pathology , Phenotype , Real-Time Polymerase Chain Reaction
16.
Med Sci Sports Exerc ; 53(9): 1855-1864, 2021 09 01.
Article En | MEDLINE | ID: mdl-33731655

PURPOSE: We aimed to investigate the hypothesis that type I collagen plays a role in increasing bone mineral density (BMD) and muscle stiffness, leading to low and high risks of fatigue fracture and muscle injury, respectively, in athletes. As a potential mechanism, we focused on the effect of the type I collagen alpha 1 chain gene (COL1A1) variant associated with transcriptional activity on bone and skeletal muscle properties. METHODS: The association between COL1A1 rs1107946 and fatigue fracture/muscle injury was evaluated in Japanese athletes. Effects of the polymorphism on tissue properties (BMD and muscle stiffness) and type I collagen α1/α2 chain ratios in muscles were examined in Japanese nonathletes. RESULTS: The C-allele carrier frequency was greater in female athletes with fatigue fracture than in those without (odds ratio = 2.44, 95% confidence interval [CI] = 1.17-5.77) and lower in female athletes with muscle injury than in those without (odds ratio = 0.46, 95% CI = 0.24-0.91). Prospective validation analysis confirmed that in female athletes, muscle injury was less frequent in C-allele carriers than in AA genotype carriers (multivariable-adjusted hazard ratio = 0.27, 95% CI = 0.08-0.96). Among female nonathletes, the C-allele of rs1107946 was associated with lower BMD and lower muscle stiffness. Muscle biopsy revealed that C-allele carriers tended to have a larger type I collagen α1/α2 chain ratio than AA genotype carriers (2.24 vs 2.05, P = 0.056), suggesting a higher proportion of type I collagen α1 homotrimers. CONCLUSION: The COL1A1 rs1107946 polymorphism exerts antagonistic effects on fatigue fracture and muscle injury among female athletes by altering the properties of these tissues, potentially owing to increased levels of type I collagen α1 chain homotrimers.


Collagen Type I/genetics , Fractures, Stress/genetics , Genetic Predisposition to Disease , Muscle, Skeletal/injuries , Adult , Female , Humans , Japan , Male , Polymorphism, Genetic , Young Adult
17.
J Biol Chem ; 296: 100453, 2021.
Article En | MEDLINE | ID: mdl-33631195

Collagen is the most abundant protein in humans. It has a characteristic triple-helix structure and is heavily posttranslationally modified. The complex biosynthesis of collagen involves processing by many enzymes and chaperones in the rough endoplasmic reticulum. Lysyl hydroxylase 1 (LH1) is required to hydroxylate lysine for cross-linking and carbohydrate attachment within collagen triple helical sequences. Additionally, a recent study of prolyl 3-hydroxylase 3 (P3H3) demonstrated that this enzyme may be critical for LH1 activity; however, the details surrounding its involvement remain unclear. If P3H3 is an LH1 chaperone that is critical for LH1 activity, P3H3 and LH1 null mice should display a similar deficiency in lysyl hydroxylation. To test this hypothesis, we compared the amount and location of hydroxylysine in the triple helical domains of type V and I collagen from P3H3 null, LH1 null, and wild-type mice. The amount of hydroxylysine in type V collagen was reduced in P3H3 null mice, but surprisingly type V collagen from LH1 null mice contained as much hydroxylysine as type V collagen from wild-type mice. In type I collagen, our results indicate that LH1 plays a global enzymatic role in lysyl hydroxylation. P3H3 is also involved in lysyl hydroxylation, particularly at cross-link formation sites, but is not required for all lysyl hydroxylation sites. In summary, our study suggests that LH1 and P3H3 likely have two distinct mechanisms to recognize different collagen types and to distinguish cross-link formation sites from other sites in type I collagen.


Collagen Type I/metabolism , Collagen Type V/metabolism , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/metabolism , Procollagen-Proline Dioxygenase/metabolism , Animals , Collagen/genetics , Collagen/metabolism , Collagen Type I/genetics , Collagen Type V/genetics , Endoplasmic Reticulum, Rough/metabolism , Hydroxylation , Hydroxylysine/metabolism , Lysine/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Procollagen-Proline Dioxygenase/genetics , Protein Conformation , Protein Processing, Post-Translational/genetics
18.
J Biol Chem ; 296: 100027, 2021.
Article En | MEDLINE | ID: mdl-33154166

Osteogenesis imperfecta (OI) is a heritable brittle bone disease mainly caused by mutations in the two type I collagen genes. Collagen synthesis is a complex process including trimer formation, glycosylation, secretion, extracellular matrix (ECM) formation, and mineralization. Using OI patient-derived fibroblasts and induced pluripotent stem cells (iPSCs), we investigated the effect of 4-phenylbutyric acid (4-PBA) on collagen synthesis to test its potential as a new treatment for OI. Endoplasmic reticulum (ER) retention of type I collagen was observed by immunofluorescence staining in OI patient-derived fibroblasts with glycine substitution and exon skipping mutations. Liquid chromatography-mass spectrometry analysis revealed excessive glycosylation of secreted type I collagen at the specific sites in OI cells. The misfolding of the type I collagen triple helix in the ECM was demonstrated by the incorporation of heat-dissociated collagen hybridizing peptide in OI cells. Type I collagen was produced excessively by OI fibroblasts with a glycine mutation, but this excessive production was normalized when OI fibroblasts were cultured on control fibroblast-derived ECM. We also found that mineralization was impaired in osteoblasts differentiated from OI iPSCs. In summary, treatment with 4-PBA normalizes the excessive production of type I collagen, reduces ER retention, partially improves misfolding of the type I collagen helix in ECM, and improves osteoblast mineralization. Thus, 4-PBA may improve not only ER retention, but also type I collagen synthesis and mineralization in human cells from OI patients.


Calcification, Physiologic/drug effects , Induced Pluripotent Stem Cells/drug effects , Osteoblasts/drug effects , Osteogenesis Imperfecta/pathology , Phenylbutyrates/pharmacology , Cell Differentiation , Child, Preschool , Collagen Type I/biosynthesis , Collagen Type I/genetics , Collagen Type I/metabolism , Endoplasmic Reticulum/metabolism , Fibroblasts/metabolism , Humans , Mutation , Osteoblasts/cytology , Osteogenesis Imperfecta/metabolism , Protein Folding
19.
Int J Mol Sci ; 21(22)2020 Nov 16.
Article En | MEDLINE | ID: mdl-33207791

Temporal and/or spatial alteration of collagen family gene expression results in bone defects. However, how collagen expression controls bone size remains largely unknown. The basic helix-loop-helix transcription factor HAND1 is expressed in developing long bones and is involved in their morphogenesis. To understand the functional role of HAND1 and collagen in the postnatal development of long bones, we overexpressed Hand1 in the osteochondroprogenitors of model mice and found that the bone volumes of cortical bones decreased in Hand1Tg/+;Twist2-Cre mice. Continuous Hand1 expression downregulated the gene expression of type I, V, and XI collagen in the diaphyses of long bones and was associated with decreased expression of Runx2 and Sp7/Osterix, encoding transcription factors involved in the transactivation of fibril-forming collagen genes. Members of the microRNA-196 family, which target the 3' untranslated regions of COL1A1 and COL1A2, were significantly upregulated in Hand1Tg/+;Twist2-Cre mice. Mass spectrometry revealed that the expression ratios of alpha 1(XI), alpha 2(XI), and alpha 2(V) in the diaphysis increased during postnatal development in wild-type mice, which was delayed in Hand1Tg/+;Twist2-Cre mice. Our results demonstrate that HAND1 regulates bone size and morphology through osteochondroprogenitors, at least partially by suppressing postnatal expression of collagen fibrils in the cortical bones.


Basic Helix-Loop-Helix Transcription Factors/metabolism , Collagen/biosynthesis , Cortical Bone/growth & development , Gene Expression Regulation , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Core Binding Factor Alpha 1 Subunit/biosynthesis , Core Binding Factor Alpha 1 Subunit/genetics , Diaphyses/growth & development , Mice , Mice, Transgenic , Organ Size , Sp7 Transcription Factor/biosynthesis , Sp7 Transcription Factor/genetics
20.
Anal Chem ; 92(12): 8427-8434, 2020 06 16.
Article En | MEDLINE | ID: mdl-32437599

Collagen is extensively modified by various enzymes, including prolyl hydroxylases. Pro residues at the Yaa position of repeating Gly-Xaa-Yaa amino acid sequences are mostly hydroxylated to 4-hydroxyproline (4Hyp), which is essential for the thermal stability of collagen triple helix. In contrast, Pro residues at the Xaa position are rarely modified to 3Hyp and 4Hyp, the biological function of which is poorly understood. Overall estimation of prolyl hydroxylation with discrimination of the position (Xaa or Yaa) and hydroxylation type (4Hyp or 3Hyp) has been difficult to perform using traditional methods. In the present study, we developed a novel position-specific analytical method featuring LC-MS detection of collagenous Gly-containing dipeptides, including Gly-Pro, Pro-Gly, Gly-4Hyp, Gly-3Hyp, and 4Hyp-Gly, after partial acid hydrolysis and precolumn derivatization using 3-aminopyridyl-N-hydroxysuccinimidyl carbamate (APDS). We performed acid hydrolysis at 55 °C with HCl/trifluoroacetic acid/water (2:1:1, v/v) to avoid peptide inversion and imbalanced peptide generation observed for collagenous model peptides. The positional distribution of Pro, 4Hyp, and 3Hyp can be calculated from the relative concentrations of the APDS-derivatized dipeptides, and in combination with amino acid analysis, we can determine their absolute contents at the Xaa and Yaa positions. Bovine type I, III, and V collagens were analyzed by the established method, and the amount of 4Hyp was higher than that of 3Hyp at the Xaa position in type I and III collagens. In addition, we clearly showed that collagen extracted from earthworm cuticles has an extremely high content of Xaa position 4Hyp, reaching over 10% of the total amino acids.


Collagen/chemistry , Hydrochloric Acid/chemistry , Hydroxyproline/analysis , Trifluoroacetic Acid/chemistry , Amino Acid Sequence , Chromatography, Liquid , Hydrolysis , Mass Spectrometry
...